Dehydrochlorination mechanism of γ-hexachlorocyclohexane degraded by dehydrochlorinase LinA from Sphingomonas paucimobilis UT26

RSC Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 4183-4192 ◽  
Author(s):  
Xiaowen Tang ◽  
Ruiming Zhang ◽  
Qingzhu Zhang ◽  
Wenxing Wang

The biotransformation pathway from γ-HCH to 1,3,4,6-TCDN catabolized by dehydrochlorinase LinA contains two discontinuous dehydrochlorination reactions and a conformational transition for the product of the first dehydrochlorination reaction.

2017 ◽  
Author(s):  
Jana Shen ◽  
Zhi Yue ◽  
Helen Zgurskaya ◽  
Wei Chen

AcrB is the inner-membrane transporter of E. coli AcrAB-TolC tripartite efflux complex, which plays a major role in the intrinsic resistance to clinically important antibiotics. AcrB pumps a wide range of toxic substrates by utilizing the proton gradient between periplasm and cytoplasm. Crystal structures of AcrB revealed three distinct conformational states of the transport cycle, substrate access, binding and extrusion, or loose (L), tight (T) and open (O) states. However, the specific residue(s) responsible for proton binding/release and the mechanism of proton-coupled conformational cycling remain controversial. Here we use the newly developed membrane hybrid-solvent continuous constant pH molecular dynamics technique to explore the protonation states and conformational dynamics of the transmembrane domain of AcrB. Simulations show that both Asp407 and Asp408 are deprotonated in the L/T states, while only Asp408 is protonated in the O state. Remarkably, release of a proton from Asp408 in the O state results in large conformational changes, such as the lateral and vertical movement of transmembrane helices as well as the salt-bridge formation between Asp408 and Lys940 and other sidechain rearrangements among essential residues.Consistent with the crystallographic differences between the O and L protomers, simulations offer dynamic details of how proton release drives the O-to-L transition in AcrB and address the controversy regarding the proton/drug stoichiometry. This work offers a significant step towards characterizing the complete cycle of proton-coupled drug transport in AcrB and further validates the membrane hybrid-solvent CpHMD technique for studies of proton-coupled transmembrane proteins which are currently poorly understood. <p><br></p>


Author(s):  
Н. Маляр ◽  
И. С. Охрименко ◽  
Л. Е. Петровская ◽  
А. А. Алексеев ◽  
К. В. Ковалев ◽  
...  

2008 ◽  
Vol 43 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Linda Wojcicka ◽  
Carole Baxter ◽  
Ron Hofmann

Abstract Microorganisms have been shown to survive drinking water disinfection and remain viable in disinfected waters despite the presence of disinfectant residuals. This may be partially attributed to protection by particulate matter. The aim of this study was to determine the effects of the presence of particulate matter on disinfection kinetics. Sphingomonas paucimobilis ATCC 10829 and Helicobacter pylori ATCC 43504 were used in inactivation experiments in the presence and absence of soil, corrosion, and wastewater particles. The results showed that the presence of such particles tended to inhibit chlorine and monochloramine inactivation, although the magnitude of the impact under the conditions tested was small (e.g., 1-log reduction in inactivation for several minutes of contact time in the presence of less than 1 mg/L of disinfectant).


2006 ◽  
Vol 172 (7) ◽  
pp. 1009-1022 ◽  
Author(s):  
Jawdat Al-Bassam ◽  
Mark van Breugel ◽  
Stephen C. Harrison ◽  
Anthony Hyman

Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat–containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 266
Author(s):  
Nataša Žuržul ◽  
Bjørn Torger Stokke

In the present paper, we describe a potassium sensor based on DNA-aptamer functionalized hydrogel, that is capable of continuous label-free potassium ion (K+) monitoring with potential for in situ application. A hydrogel attached to the end of an optical fiber is designed with di-oligonucleotides grafted to the polymer network that may serve as network junctions in addition to the covalent crosslinks. Specific affinity toward K+ is based on exploiting a particular aptamer that exhibits conformational transition from single-stranded DNA to G-quadruplex formed by the di-oligonucleotide in the presence of K+. Integration of this aptamer into the hydrogel transforms the K+ specific conformational transition to a K+ concentration dependent deswelling of the hydrogel. High-resolution interferometry monitors changes in extent of swelling at 1 Hz and 2 nm resolution for the hydrogel matrix of 50 µm. The developed hydrogel-based biosensor displayed high selectivity for K+ ions in the concentration range up to 10 mM, in the presence of physiological concentrations of Na+. Additionally, the concentration dependent and selective K+ detection demonstrated in the artificial blood buffer environment, both at room and physiological temperatures, suggests substantial potential for practical applications such as monitoring of potassium ion concentration in blood levels in intensive care medicine.


2021 ◽  
pp. 2100333
Author(s):  
Guo‐Qiao Wang ◽  
Jia Yang ◽  
Da‐Yong Hou ◽  
Rui Zheng ◽  
Muhetaerjiang Mamuti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document