scholarly journals Design, synthesis and RAFT polymerisation of a quinoline-based monomer for use in metal-binding composite microfibers

RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6598-6606 ◽  
Author(s):  
Anna Isakova ◽  
Olga Efremova ◽  
Nikki Pullan ◽  
Larry Lüer ◽  
Paul D. Topham

Metal-binding polymer fibres have attracted major attention for diverse applications in membranes for metal sequestration from waste waters, non-woven wound dressings, matrices for photocatalysis, and many more.

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5221
Author(s):  
Salvatore La Gatta ◽  
Linda Leone ◽  
Ornella Maglio ◽  
Maria De Fenza ◽  
Flavia Nastri ◽  
...  

Understanding the structural determinants for metal ion coordination in metalloproteins is a fundamental issue for designing metal binding sites with predetermined geometry and activity. In order to achieve this, we report in this paper the design, synthesis and metal binding properties of METP3, a homodimer made up of a small peptide, which self assembles in the presence of tetrahedrally coordinating metal ions. METP3 was obtained through a redesign approach, starting from the previously developed METP molecule. The undecapeptide sequence of METP, which dimerizes to house a Cys4 tetrahedral binding site, was redesigned in order to accommodate a Cys2His2 site. The binding properties of METP3 were determined toward different metal ions. Successful assembly of METP3 with Co(II), Zn(II) and Cd(II), in the expected 2:1 stoichiometry and tetrahedral geometry was proven by UV-visible spectroscopy. CD measurements on both the free and metal-bound forms revealed that the metal coordination drives the peptide chain to fold into a turned conformation. Finally, NMR data of the Zn(II)-METP3 complex, together with a retrostructural analysis of the Cys-X-X-His motif in metalloproteins, allowed us to define the model structure. All the results establish the suitability of the short METP sequence for accommodating tetrahedral metal binding sites, regardless of the first coordination ligands.


1998 ◽  
Vol 234 (1-2) ◽  
pp. 225-229 ◽  
Author(s):  
B. F. Smith ◽  
R. R. Gibson ◽  
G. D. Jarvinen ◽  
T. W. Robison ◽  
N. C. Schroeder ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 29 (19) ◽  
pp. no-no
Author(s):  
M. MASCAL ◽  
J. HANSEN ◽  
A. J. BLAKE ◽  
W.-S. LI

2018 ◽  
Vol 87 (1) ◽  
pp. 621-643 ◽  
Author(s):  
Emily M. Zygiel ◽  
Elizabeth M. Nolan

In response to microbial infection, the human host deploys metal-sequestering host-defense proteins, which reduce nutrient availability and thereby inhibit microbial growth and virulence. Calprotectin (CP) is an abundant antimicrobial protein released from neutrophils and epithelial cells at sites of infection. CP sequesters divalent first-row transition metal ions to limit the availability of essential metal nutrients in the extracellular space. While functional and clinical studies of CP have been pursued for decades, advances in our understanding of its biological coordination chemistry, which is central to its role in the host–microbe interaction, have been made in more recent years. In this review, we focus on the coordination chemistry of CP and highlight studies of its metal-binding properties and contributions to the metal-withholding innate immune response. Taken together, these recent studies inform our current model of how CP participates in metal homeostasis and immunity, and they provide a foundation for further investigations of a remarkable metal-chelating protein at the host–microbe interface and beyond.


Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 63
Author(s):  
L. M. Viranga Tillekeratne ◽  
Ayad Ayad Al-Hamashi ◽  
Samkeliso Dlamini ◽  
William Taylor ◽  
Radhika Koranne ◽  
...  

Epigenetic regulation of gene expression without changing DNA sequences is a promising strategy in developing therapeutic agents for human diseases, especially cancer. Histone deacetylases (HDACs) are a family of enzymes involved in epigenetic modulation of gene expression by chromatin remodeling. Deacetylation of the lysine side chains of histones by HDAC proteins renders DNA transcriptionally inactive, resulting in the inhibition of expression of tumor suppressor genes, leading to tumorigenesis and tumor progression. Therefore, inhibiting HDAC enzymes has become an attractive strategy to modulate gene expression as a strategy for developing anticancer drugs. There are currently four FDA-approved cancer drugs in clinical use, and many more are in different stages of clinical trials. However, their clinical utility is limited due to undesirable side effects, mainly attributed to their lack of selectivity and the presence of a hydroxamic acid moiety as the metal-binding group. There are eighteen different isoforms of HDACs belonging to four classes that have been identified in humans. A major challenge in HDAC inhibitor development is how to make them selective for these HDAC isoforms and classes. We report the design and synthesis of new classes of HDAC inhibitors and the evaluation of their anticancer activity and selectivity.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4202 ◽  
Author(s):  
Md. Monarul Islam ◽  
Paris E. Georghiou ◽  
Shofiur Rahman ◽  
Takehiko Yamato

Calixarene-analogous metacyclophanes (CAMs) are a special class of cyclophanes that are cyclic polyaromatic hydrocarbons containing three or more aromatic rings linked by one or more methylene bridging groups. They can be considered to be analogues of calixarenes, since, in both types of molecules, the component aromatic rings are linked by methylene groups, which are meta to each other. Since the prototype or classical calix[4]arene consists of four benzene rings each linked by methylene bridges, which are also meta to each other, it can be considered to be an example of a functionalized [1.1.1.1]metacyclophane. A metacyclophane (MCP) that consists of three individual hydroxyl-group functionalized aromatic rings linked by methylene groups, e.g., a trihydroxy[1.1.1]MCP may therefore, by analogy, be termed in the broadest sense as a “calix[3]arene” or a “calix[3]arene-analogous metacyclophane”. Most of the CAMs reported have been synthesized by fragment coupling approaches. The design, synthesis and development of functionalized CAMs, MCPs, calixarenes and calixarene analogues has been an area of great activity in the past few decades, due their potential applications as molecular receptors, sensors and ligands for metal binding, and for theoretical studies, etc. In this review article, we focus mainly on the synthesis, structure and conformational properties of [1.1.1]CAMs, i.e., “calix[3]arenes” and their analogues, which contain three functionalized aromatic rings and which provide new scaffolds for further explorations in supramolecular and sensor chemistry.


Sign in / Sign up

Export Citation Format

Share Document