A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties

2015 ◽  
Vol 3 (18) ◽  
pp. 9826-9836 ◽  
Author(s):  
Rui Wang ◽  
Dongxian Zhuo ◽  
Zixiang Weng ◽  
Lixin Wu ◽  
Xiuyan Cheng ◽  
...  

A novel nanosilica/graphene oxide hybrid was prepared, which can simultaneously improve the typical properties (dielectric, thermal conductivity, thermal stability, and mechanical properties) and flame retardancy of epoxy resin.

RSC Advances ◽  
2020 ◽  
Vol 10 (24) ◽  
pp. 13949-13959
Author(s):  
Yanlong Sui ◽  
Lijie Qu ◽  
Peihong Li ◽  
Xueyan Dai ◽  
Qiangsheng Fang ◽  
...  

This study provided a modification strategy for improving the flame retardance of graphene and its derivatives in a polymer matrix.


10.6036/10327 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 98-103
Author(s):  
XIAN WANG ◽  
JINLONG ZHUO ◽  
TIANQING XING ◽  
Xingran Wang

In order to reduce flammability, smoke release and enhance thermal stability of epoxy resin (EP), iron powder is mixed with graphene oxide/ epoxy resin (GO/EP) composite by mechanical blending. The combustion performance of composite material is investigated through limiting oxygen index (LOI), Underwriters Laboratory (UL)-94 test, and cone calorimeter test (CCT). Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) and scanning electron microscope (SEM) are also used to explore the mechanism of flame retardancy and smoke suppression. Results show that, with the addition of 0.5% mass fraction of GO and the corresponding iron powder combination (EP3 sample), the LOI value can achieve 32.5% while reaching the UL-94 V0 rating. Compare with EP0, the peaks of heat release rate, smoke production rate, and smoke factor values of EP3 are decreased by 42%, 60%, and 50%, respectively. The char and TG-FTIR data of EP3 reveal that it has a more compact structure, good thermal stability, and produce fewer toxic gases and smoke. Reduction of GO could inhibit the degradation of EP, and iron catalyzes the formation of carbonaceous char on the surface. Thus, the thermal stability and flame retardancy of EP are improved significantly. This study provides a suitable way to prepare graphene/EP composites that contain iron catalyst and can be extended to the industrial manufacture of flame retardant polymer composites. Keywords: iron powder; epoxy resin; graphene oxide; flame retardant; thermal stability


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1548 ◽  
Author(s):  
Xingming Bian ◽  
Rui Tuo ◽  
Wei Yang ◽  
Yiran Zhang ◽  
Qing Xie ◽  
...  

Filled high thermal conductivity epoxy composite solves the problem of the low thermal conductivity of the epoxy resin itself, but the addition of the thermal conductive filler reduces the mechanical properties of the composite, which limits its application in the field of high voltage insulation. In this work, carboxyl-terminated butadiene nitrile liquid rubber (CTBN) was used to toughen the boron nitride-epoxy hybrid system, and the effects of different contents of CTBN on the mechanical properties, thermal conductivity, glass transition temperature, thermal stability, and dielectric properties of the composites were investigated. The results showed that when the content of CTBN was 5–15 wt.%, the CTBN formed a dispersed island structure in the epoxy resin matrix. The toughness of the composite increased by about 32%, the breakdown strength was improved, and the thermal conductivity was about 160% higher than that of pure epoxy resin. As the CTBN content increased, the glass transition temperature and thermal stability of the composite decreased and the dielectric constant and the dielectric loss increased. When the CTBN content is 10–15 wt.%, a toughened epoxy composite material with better comprehensive properties is obtained.


Sign in / Sign up

Export Citation Format

Share Document