Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers

2021 ◽  
Vol 406 ◽  
pp. 126881
Author(s):  
Yu Qi ◽  
Zhihuan Weng ◽  
Yan Kou ◽  
Lequn Song ◽  
Jiahui Li ◽  
...  
2019 ◽  
Vol 9 (16) ◽  
pp. 3275 ◽  
Author(s):  
Guo-qiang Chai ◽  
Guo-qing Zhu ◽  
Yunji Gao ◽  
Jinju Zhou ◽  
Shuai Gao

In order to study the effect of carbon nanotubes (CNTs) on the flame retardancy of carbon fiber (CF)/epoxy resin (EP) composites, CF/EP and CNTs/CF/EP composites were prepared by solution blending. The flame retardancy and thermal stability were studied by cone calorimetry and thermogravimetric analysis. It was found that CNTs and CF had a certain synergistic effect on improving flame retardancy and thermal stability of EP. The peak heat release rate of F7N7, which represents the EP composites with 0.7 wt % CF and 0.7 wt % CNTs, was minimal. The total smoke production of F5N5 which represents the EP composites with 0.5 wt % CF and 0.5 wt % CNTs was the smallest, which was decreased by 43.04% more than the EP. The initial decomposition temperature of F7N7 was about 14 °C higher than that of F7, and the mass loss at Tmax was greatly reduced. The apparent activation energy of F7N7 is 2.7 kJ·mol−1 more than EP. Finally, the tensile and flexural strength of the composites were also improved, so it could be applied to a high-performance matrix of CF/EP composites, which are usually used as the advanced composites in the aerospace field.


2015 ◽  
Vol 3 (18) ◽  
pp. 9826-9836 ◽  
Author(s):  
Rui Wang ◽  
Dongxian Zhuo ◽  
Zixiang Weng ◽  
Lixin Wu ◽  
Xiuyan Cheng ◽  
...  

A novel nanosilica/graphene oxide hybrid was prepared, which can simultaneously improve the typical properties (dielectric, thermal conductivity, thermal stability, and mechanical properties) and flame retardancy of epoxy resin.


RSC Advances ◽  
2020 ◽  
Vol 10 (24) ◽  
pp. 13949-13959
Author(s):  
Yanlong Sui ◽  
Lijie Qu ◽  
Peihong Li ◽  
Xueyan Dai ◽  
Qiangsheng Fang ◽  
...  

This study provided a modification strategy for improving the flame retardance of graphene and its derivatives in a polymer matrix.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2145 ◽  
Author(s):  
Quanyi Liu ◽  
Donghui Wang ◽  
Zekun Li ◽  
Zhifa Li ◽  
Xiaoliang Peng ◽  
...  

With the increasing emphasis on environmental protection, the development of flame retardants for epoxy resin (EP) has tended to be non-toxic, efficient, multifunctional and systematic. Currently reported flame retardants have been capable of providing flame retardancy, heat resistance and thermal stability to EP. However, many aspects still need to be further improved. This paper reviews the development of EPs in halogen-free flame retardants, focusing on phosphorus flame retardants, carbon-based materials, silicon flame retardants, inorganic nanofillers, and metal-containing compounds. These flame retardants can be used on their own or in combination to achieve the desired results. The effects of these flame retardants on the thermal stability and flame retardancy of EPs were discussed. Despite the great progress on flame retardants for EP in recent years, further improvement of EP is needed to obtain numerous eco-friendly high-performance materials.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document