Frequency-regulated pulsed electrodeposition of CuInS2 on ZnO nanorod arrays as visible light photoanodes

2015 ◽  
Vol 3 (31) ◽  
pp. 15876-15881 ◽  
Author(s):  
Yiming Tang ◽  
Peng Wang ◽  
Jung-Ho Yun ◽  
Rose Amal ◽  
Yun Hau Ng

High quality coating of vertically aligned ZnO nanorods with CuInS2 nanoparticles is achieved by a pulse-regulated electrodeposition method.

2015 ◽  
Vol 44 (16) ◽  
pp. 7127-7130 ◽  
Author(s):  
Yiming Tang ◽  
Jung-Ho Yun ◽  
Lianzhou Wang ◽  
Rose Amal ◽  
Yun Hau Ng

Photosensitized ZnO nanorods uniformly coated with CuInS2 nanoparticles from sequentially pulsed-electrodeposition yielded superior charge transfer ability and great enhancement in photoelectrochemical performance under visible light irradiation.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Da Zhang ◽  
Yuanyi Wang ◽  
Liang Chen ◽  
Chengjing Xiao ◽  
Jing Feng ◽  
...  

A simple two-step method of growing ZnO nanorod arrays on the surface of BiOI nanosheets was developed under mild environment. The hierarchical structure of ZnO arrays@BiOI nanosheets was characterized by various measurements like X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray detector. The optical absorption of the ZnO arrays@BiOI nanosheets composite was investigated by UV-Vis diffuse reflectance spectra. The photocatalytic degradation of methanol orange under visible light shows that the obtained ZnO arrays@BiOI nanosheets heterostructures exhibit enhanced photocatalytic activity, contrasting to the sum of BiOI nanosheets and ZnO nanorods. The mechanism of the photocatalytic process was discussed. This method of growing ZnO nanorod arrays on other nanosheets also provides a potential method to fabricating other complex structures.


2013 ◽  
Vol 750-752 ◽  
pp. 253-258
Author(s):  
Li Rong Yang ◽  
Jun Cong Wei ◽  
Li Zhang ◽  
Hai Bin Chen

Well-aligned ZnO nanorod arrays on Chaleted Sol-Gel-Derived ZnO thin films was achieved at a temperature of 90°C by a surfactant-assisted soft chemical approach. The nanorod arrays were characterized by XRD, SEM, XPS, and UV-Vis absorbance spectra. The ZnO nanorod arrays are wurtzite crystal stuctures preferentially orienting in the direction of the c-axis and ZnO nanorods are grown verticallyon the substrate. The XPS analysis shows the Zn:O ratio of ZnO nanorod arrays near is 1:1. The UV-Vis absorbance spectra indicate that ZnO nanorod arrays have absorption of visible-light as well as ultraviolet-light. Therefore, the ZnO nanorods may be good candidates for visible-light photocatalysis materials from the viewpoint of practical applications.


2015 ◽  
Vol 3 (38) ◽  
pp. 19582-19587 ◽  
Author(s):  
Yiming Tang ◽  
Patrapark Traveerungroj ◽  
Hui Ling Tan ◽  
Peng Wang ◽  
Rose Amal ◽  
...  

ZnO nanorod arrays are used as suitable large area scaffolds to support CdS for improved visible light photoelectrochemical performances.


2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.


CrystEngComm ◽  
2017 ◽  
Vol 19 (41) ◽  
pp. 6085-6088 ◽  
Author(s):  
Amany Ali ◽  
DongBo Wang ◽  
JinZhong Wang ◽  
ShuJie Jiao ◽  
FengYun Guo ◽  
...  

The ultraviolet luminescence of ZnO nanorods was greatly enhanced through introducing an AlN buffer layer.


RSC Advances ◽  
2014 ◽  
Vol 4 (84) ◽  
pp. 44452-44456 ◽  
Author(s):  
Y. Yin ◽  
Y. Sun ◽  
M. Yu ◽  
X. Liu ◽  
B. Yang ◽  
...  

Annealing or plasma pre-treating the ZnO seed layer influences the nucleation and hydrothermal growth of ZnO nanorods and their photoluminescence.


Sign in / Sign up

Export Citation Format

Share Document