Facile Synthesis of a Porous ZnO Nanorod Array with Enhanced Photocatalysis for Photoelectrochemical Water Splitting Application

2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Mohamad Hafiz Mamat ◽  
Mohd Izzudin Che Khalin ◽  
Nik Noor Hafizah Nik Mohammad ◽  
Zuraida Khusaimi ◽  
Nor Diyana Md Sin ◽  
...  

We have fabricated metal-semiconductor-metal- (MSM-) type ultraviolet (UV) photoconductive sensors using aluminium- (Al-) doped zinc oxide (ZnO) nanorod arrays that were annealed in different environments: air, oxygen, or a vacuum. The Al-doped ZnO nanorods had an average diameter of 60 nm with a thickness of approximately 600 nm that included the seed layer (with thickness~200 nm). Our results show that the vacuum-annealed nanorod-array-based UV photoconductive sensor has the highest photocurrent value of  2.43  ×  10-4 A. The high photocurrent is due to the high concentration of zinc (Zn) interstitials in the vacuum-annealed nanorod arrays. In contrast, the oxygen-annealing process applied to the Al-doped ZnO nanorod arrays produced highly sensitive UV photoconductive sensors, in which the sensitivity reached 55.6, due to the surface properties of the oxygen-annealed nanorods, which have a higher affinity for oxygen adsorption than the other samples and were thereby capable of reducing the sensor’s dark current. In addition, the sensor fabricated using the oxygen-annealed nanorod arrays had the lowest rise and decay time constants. Our result shows that the annealing environment greatly affects the surface condition and properties of the Al-doped ZnO nanorod arrays, which influences the performance of the UV photoconductive sensors.


2011 ◽  
Vol 418-420 ◽  
pp. 1507-1510
Author(s):  
Chun Mei Zhang ◽  
Tao Meng ◽  
Yan Ping Hao ◽  
Qiang Chen

Well-aligned crystalline ZnO nanorod arrays were synthesized on the glass substrate via an aqueous solution route, and the effect of the pH value on structural properties and morphology of ZnO nanorod arrays was investigated using XRD and FESEM. FESEM micrographs show the formation of ZnO nanorod arrays at different pH values. XRD patterns confirm that the ZnO nanorods were wurtzite structure preferentially oriented in c-axis direction and the highest quality of nanorod array was formed at high pH value.


2007 ◽  
Vol 121-123 ◽  
pp. 809-812
Author(s):  
Ya Lin Lu ◽  
Iyad A. Dajani ◽  
W.J. Mandeville ◽  
R.J. Knize ◽  
S.S. Mao

In this research, nanoscale spatial resolution p-n junction photodetector arrays were developed using ZnO nanorod arrays grown on p-type silicon substrates. In order to optimize the nanorod array quality, an advanced combinatorial spreadsheet approach was used to optimize the Au catalyst thickness. The crystallinity of these as-grown ZnO nanorods’ was compared to that of bulk and thin film ZnO materials.


CrystEngComm ◽  
2017 ◽  
Vol 19 (41) ◽  
pp. 6085-6088 ◽  
Author(s):  
Amany Ali ◽  
DongBo Wang ◽  
JinZhong Wang ◽  
ShuJie Jiao ◽  
FengYun Guo ◽  
...  

The ultraviolet luminescence of ZnO nanorods was greatly enhanced through introducing an AlN buffer layer.


2009 ◽  
Vol 255 (11) ◽  
pp. 5861-5865 ◽  
Author(s):  
X.Q. Zhao ◽  
C.R. Kim ◽  
J.Y. Lee ◽  
C.M. Shin ◽  
J.H. Heo ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Da Zhang ◽  
Yuanyi Wang ◽  
Liang Chen ◽  
Chengjing Xiao ◽  
Jing Feng ◽  
...  

A simple two-step method of growing ZnO nanorod arrays on the surface of BiOI nanosheets was developed under mild environment. The hierarchical structure of ZnO arrays@BiOI nanosheets was characterized by various measurements like X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray detector. The optical absorption of the ZnO arrays@BiOI nanosheets composite was investigated by UV-Vis diffuse reflectance spectra. The photocatalytic degradation of methanol orange under visible light shows that the obtained ZnO arrays@BiOI nanosheets heterostructures exhibit enhanced photocatalytic activity, contrasting to the sum of BiOI nanosheets and ZnO nanorods. The mechanism of the photocatalytic process was discussed. This method of growing ZnO nanorod arrays on other nanosheets also provides a potential method to fabricating other complex structures.


RSC Advances ◽  
2014 ◽  
Vol 4 (84) ◽  
pp. 44452-44456 ◽  
Author(s):  
Y. Yin ◽  
Y. Sun ◽  
M. Yu ◽  
X. Liu ◽  
B. Yang ◽  
...  

Annealing or plasma pre-treating the ZnO seed layer influences the nucleation and hydrothermal growth of ZnO nanorods and their photoluminescence.


2016 ◽  
Vol 675-676 ◽  
pp. 134-137
Author(s):  
Phattharaphong Khamkhom ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Chanunthorn Chananonnawathorn ◽  
Sukon Kalasung ◽  
...  

In this study, we fabricated the zinc oxide (ZnO) nanorods arrays by hydrothermal technique on indium doped tin oxide (ITO) substrate with different concentration of the precursor with zinc nitrate and hexamethyleneteramine (HMTA) in distilled water. Structure, morphology and optical properties of ZnOnanorods on ITO substrate were characterized by x-ray diffractometer, field-emission scanning electron microscope and spectrophotometer, respectively. The ZnO nanorod arrays showing preferentially oriented in the (001) direction and with a wurtzite structure. The scanning electron microscopy results showed that the hexagonal shape ZnO nanorods. It was found that the diameter, length and density of the ZnO nanorods arrays were strongly influenced by the precursor concentration.


2010 ◽  
Vol 123-125 ◽  
pp. 811-814 ◽  
Author(s):  
Yi Su ◽  
Xiao Ping Zou ◽  
Xiang Min Meng ◽  
Gong Qing Teng ◽  
Gang Qiang Yang ◽  
...  

We are reporting here on an inexpensive and facile fabrication method for ZnO nanorod arrays by hydrothermal growth at low temperature (90°C). In our experiment, ZnO nanostructures were grown on glass substrate using an equimolar (0.1M) aqueous solution of Zn(NO3)2•6H2O (zinc nitrate hexahydrate) and C6H12N4 (HMTA) as precursors solution, and using ammonia solution to controlling the pH levels. It enable easily obtained arrayed ZnO nanorods on substrate, and nanowires which grown on nanorod arrays were identified after about 1 month in the air. The growth process of nanorods and the formation mechanism of nanowires were investigated.


Sign in / Sign up

Export Citation Format

Share Document