The influence of the mesoporous TiO2 scaffold on the performance of methyl ammonium lead iodide (MAPI) perovskite solar cells: charge injection, charge recombination and solar cell efficiency relationship

2015 ◽  
Vol 3 (44) ◽  
pp. 22154-22161 ◽  
Author(s):  
Alba Matas Adams ◽  
Jose Manuel Marin-Beloqui ◽  
Georgiana Stoica ◽  
Emilio Palomares

This works shows the influence of the mesoporous TiO2 nature over the carrier recombination kinetics and the perovskite efficiency.

Nanoscale ◽  
2018 ◽  
Vol 10 (13) ◽  
pp. 6155-6158 ◽  
Author(s):  
Núria F. Montcada ◽  
Maria Méndez ◽  
Kyung Taek Cho ◽  
Mohammad Khaja Nazeeruddin ◽  
Emilio Palomares

We describe how the use of photo-induced charge extraction technique can be useful to study and understand the relationship between perovskite composition, ion reorganization process and solar cell efficiency.


2021 ◽  
Vol 21 (8) ◽  
pp. 4367-4371
Author(s):  
Sung Hwan Joo ◽  
Il Tae Kim ◽  
Hyung Wook Choi

The perovskite film—manufactured via a one-step method—was superficially improved through an anti-solvent process to increase solar cell efficiency. Although perovskite synthesis proceeds rapidly, a significant amount of lead iodide residue remains. Well-placed lead iodide in perovskite grains prevents electron–hole recombination; however, when irregularly placed, it interferes with the movement of electron and holes. In this study, we focused on improving the crystallinity of the perovskite layer, as well as reducing lead iodide residues by adding a methylammonium halide material to the anti-solvent. Methylammonium iodide in chlorobenzene used as an anti-solvent reduces lead iodide residues and improves the crystallinity of formamidinium lead iodide perovskite. The improved crystallinity of the perovskite layer increased the absorbance and, with reduced lead iodide residues, increased the efficiency of the perovskite solar cell by 1.914%.


2019 ◽  
Vol 7 (41) ◽  
pp. 23739-23746 ◽  
Author(s):  
Chengbin Fei ◽  
Meng Zhou ◽  
Jonathan Ogle ◽  
Detlef-M. Smilgies ◽  
Luisa Whittaker-Brooks ◽  
...  

Large size cation (PA) was introduced into the grain boundary and film surface of the 3D perovskite to improve the solar cell efficiency and moisture stability.


Nanoscale ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 3053-3059 ◽  
Author(s):  
Long Zhou ◽  
Jingjing Chang ◽  
Ziye Liu ◽  
Xu Sun ◽  
Zhenhua Lin ◽  
...  

Efficient perovskite/PCBM heterojunction is formed in one-step for perovskite solar cells with high performance and long-term stability.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Author(s):  
Yan Yang ◽  
Wangen Zhao ◽  
Tengteng Yang ◽  
Jiali Liu ◽  
Jingru Zhang ◽  
...  

Guanidinium thiocyanate was selected to modify the surface terminations of methylamine lead iodide (MAPbI3) perovskite films and a 21.26% PCE was acquired for a solar cell based on the MAPbI3 system, and the voltage deficit is reduced to 0.426 V.


Author(s):  
H. Bitam ◽  
B. Hadjoudja ◽  
Beddiaf Zaidi ◽  
C. Shakher ◽  
S. Gagui ◽  
...  

Due to increased energy intensive human activities resulting accelerated demand for electric power coupled with occurrence of natural disasters with increased frequency, intensity, and duration, it becomes essential to explore and advance renewable energy technology for sustainability of the society. Addressing the stated problem and providing a radical solution has been attempted in this study. To harvest the renewable energy, among variety of solar cells reported, a composite a-Si/CZTS photovoltaic devices has not yet been investigated. The calculated parameters for solar cell based on the new array of layers consisting of a-Si/CZTS are reported in this study. The variation of i) solar cell efficiency as a function of CZTS layer thickness, temperature, acceptor, and donor defect concentration; ii) variation of the open circuit current density as a function of temperature, open circuit voltage; iii) variation of open circuit voltage as a function of the thickness of the CZTS layer has been determined. There has been no reported study on a-Si/CZTS configuration-based solar cell, analysis of the parameters, and study to address the challenges imped efficiency of the photovoltaic device and the same has been discussed in this work. The value of the SnO2/a-Si/CZTS solar cells obtained from the simulation is 23.9 %.


2018 ◽  
Vol 5 (4) ◽  
pp. 041602 ◽  
Author(s):  
Michael Powalla ◽  
Stefan Paetel ◽  
Erik Ahlswede ◽  
Roland Wuerz ◽  
Cordula D. Wessendorf ◽  
...  

ACS Photonics ◽  
2015 ◽  
Vol 2 (5) ◽  
pp. 589-594 ◽  
Author(s):  
Dongqin Bi ◽  
Ahmed M. El-Zohry ◽  
Anders Hagfeldt ◽  
Gerrit Boschloo

Author(s):  
Hisaaki Nishimura ◽  
Takaya Maekawa ◽  
Kazushi Enomoto ◽  
Naoteru Shigekawa ◽  
Tomomi Takagi ◽  
...  

The sensitivity of Si solar cells to the UV portion of the solar spectrum is low, and must be increased to further improve their efficiencies.


Sign in / Sign up

Export Citation Format

Share Document