scholarly journals Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C)

2016 ◽  
Vol 4 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Wei-Jie Li ◽  
Shu-Lei Chou ◽  
Jia-Zhao Wang ◽  
Hua-Kun Liu ◽  
Shi-Xue Dou

The red phosphorus and graphene nanoplate composite delivered a high reversible capacity of 1146 mA h g−1 at a current density of 100 mA g−1 and an excellent cycling stability of 200 cycles with 92.5% capacity retention.

Nanoscale ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 5581-5590 ◽  
Author(s):  
Lin Zhu ◽  
Ziliang Chen ◽  
Yun Song ◽  
Pei Wang ◽  
Yingchang Jiang ◽  
...  

Mn0.33Co0.67N nanosheets were reported as a novel anode material for LIBs with a high reversible capacity close to 900 mA h g−1 after 150 cycles at a current density of 500 mA g−1, which is superior to 749 mA h g−1 of undoped CoN due to the enhancement of regeneration of Co–N bonds.


2015 ◽  
Vol 8 (12) ◽  
pp. 3531-3538 ◽  
Author(s):  
Jun Liu ◽  
Peter Kopold ◽  
Chao Wu ◽  
Peter A. van Aken ◽  
Joachim Maier ◽  
...  

Uniform yolk–shell Sn4P3@C nanospheres exhibit very high reversible capacity, superior rate capability and stable cycling performance for Na-ion batteries.


2019 ◽  
Vol 7 (6) ◽  
pp. 2553-2559 ◽  
Author(s):  
Pengxin Li ◽  
Xin Guo ◽  
Shijian Wang ◽  
Rui Zang ◽  
Xuemei Li ◽  
...  

Two-dimensional Sb@TiO2−x nanoplates with abundant voids deliver high reversible capacity, excellent rate capability and stable cycling performance.


RSC Advances ◽  
2017 ◽  
Vol 7 (37) ◽  
pp. 23122-23126 ◽  
Author(s):  
Zhenwei Mao ◽  
Min Zhou ◽  
Kangli Wang ◽  
Wei Wang ◽  
Hongwei Tao ◽  
...  

Co3O4@CNFs was fabricated facilely with unique 1D structure of Co3O4 nanoparticles encapsulated in carbon nanofibers, delivering a high reversible capacity of 422.4 mA h g−1 with outstanding rate capability and cycling performance.


2017 ◽  
Vol 41 (21) ◽  
pp. 12969-12975 ◽  
Author(s):  
Yue Zhang ◽  
Yudai Huang ◽  
Yakun Tang ◽  
Hongyang Zhao ◽  
Yanjun Cai ◽  
...  

Bicontinuous hierarchical mesoporous LiFePO4/C microbelts have been synthesized using a simple dual-solvent electrospinning method for the first time. The sample exhibits a high reversible capacity (153 mA h g−1 at 0.5C), and an excellent high rate cycling performance.


2016 ◽  
Vol 4 (2) ◽  
pp. 605-611 ◽  
Author(s):  
Qing Xia ◽  
Hailei Zhao ◽  
Zhihong Du ◽  
Zijia Zhang ◽  
Shanming Li ◽  
...  

3-D hierarchical MoO2/Ni/C, with high reversible capacity and excellent rate capability, is a promising candidate for anode materials of lithium ion batteries.


Nanoscale ◽  
2015 ◽  
Vol 7 (7) ◽  
pp. 3270-3275 ◽  
Author(s):  
Hongwei Zhang ◽  
Xiaoran Sun ◽  
Xiaodan Huang ◽  
Liang Zhou

A novel “spray drying–carbonization–oxidation” strategy has been developed to fabricate an α-Fe2O3@graphitic carbon nanocomposite with a high reversible capacity, excellent cycling stability, and outstanding rate capability.


2016 ◽  
Vol 4 (17) ◽  
pp. 6472-6478 ◽  
Author(s):  
Bin Cao ◽  
Huan Liu ◽  
Bin Xu ◽  
Yaofei Lei ◽  
Xiaohong Chen ◽  
...  

Mesoporous soft carbon with a high reversible capacity of 331 mA h g−1, excellent rate capability and cycling performance was prepared from mesophase pitch using nano-CaCO3 as the template for sodium-ion batteries.


2013 ◽  
Vol 06 (06) ◽  
pp. 1350063 ◽  
Author(s):  
HAI LI ◽  
CHUNXIANG LU

The three-dimensional (3D) graphene networks have been prepared by annealing the mixture of graphene oxide and SiO 2 nanoparticles and then etching SiO 2. The obtained material was characterized by X-ray diffraction, scanning electron microscope and transmission electron microscopy, which revealed that 3D networks consisting of crumpled graphene nanosheets were preserved after the removal of SiO 2. When used as anode material of lithium ion batteries, the graphene networks showed a reversible capacity of 610.9 mAh/g at a current density of 50 mA/g after 50 cycles and excellent rate capability of 291.5 mAh/g at a current density of 5000 mA/g. The good electrochemical performance can be attributed to the network structure, which enables graphene to electrochemically absorb more lithium ions and significantly improve the electrical conductivity of electrode. The graphene networks have the potential applications in ultracapacitor and catalyst supports.


2016 ◽  
Vol 4 (2) ◽  
pp. 425-433 ◽  
Author(s):  
Qiang Wang ◽  
Binwei Yu ◽  
Xiao Li ◽  
Lili Xing ◽  
Xinyu Xue

Core–shell Co3O4/ZnCo2O4 hollow spheres exhibit superior electrochemical performance with high reversible capacity, excellent cycling stability and good rate capability.


Sign in / Sign up

Export Citation Format

Share Document