Improving the capacity of lithium–sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials

2017 ◽  
Vol 19 (12) ◽  
pp. 8349-8355 ◽  
Author(s):  
Artur Schneider ◽  
Jürgen Janek ◽  
Torsten Brezesinski

O/N-functionalization of hierarchical carbon is demonstrated to be effective in enhancing the adsorption capacity for lithium polysulfide and thus the reversible capacity of Li–S cells.

2021 ◽  
pp. 2143004
Author(s):  
Yuman Yang ◽  
Yi Zhang ◽  
Meng Yang ◽  
Xiangyu Zhao

The dissolution and shuttle behavior of lithium polysulfides has been considered to be one of the serious problems restricting the development of lithium−sulfur (Li–S) batteries. Polar compounds are regarded as promising sulfur host materials due to their strong chemical adsorption to lithium polysulfides. Herein, polar TiO[Formula: see text] with porous structure is employed as the sulfur host, which has a high specific surface area and provides nanoconfined space for storage and adsorption of sulfur species. As a result, the as-prepared S@TiO[Formula: see text] cathode exhibits significantly enhanced reversible capacity, cycling stability, and reaction kinetics compared to those of the as-prepared S@TiO2 cathode.


2021 ◽  
Author(s):  
Aoning Wang ◽  
Yixuan Chen ◽  
Li Liu ◽  
Xiang Liu ◽  
Zhoulu Wang ◽  
...  

Lithium-sulfur batteries have high theoretical energy density, but they need better sulfur host materials to retain lithium polysulfide shuttle effect which result in batteries’ capacity fading. Titanium carbide MXene (Ti3C2Tx...


2021 ◽  
Vol 10 (1) ◽  
pp. 20-33
Author(s):  
Lian Wu ◽  
Yongqiang Dai ◽  
Wei Zeng ◽  
Jintao Huang ◽  
Bing Liao ◽  
...  

Abstract Fast charge transfer and lithium-ion transport in the electrodes are necessary for high performance Li–S batteries. Herein, a N-doped carbon-coated intercalated-bentonite (Bent@C) with interlamellar ion path and 3D conductive network architecture is designed to improve the performance of Li–S batteries by expediting ion/electron transport in the cathode. The interlamellar ion pathways are constructed through inorganic/organic intercalation of bentonite. The 3D conductive networks consist of N-doped carbon, both in the interlayer and on the surface of the modified bentonite. Benefiting from the unique structure of the Bent@C, the S/Bent@C cathode exhibits a high initial capacity of 1,361 mA h g−1 at 0.2C and achieves a high reversible capacity of 618.1 m Ah g−1 at 2C after 500 cycles with a sulfur loading of 2 mg cm−2. Moreover, with a higher sulfur loading of 3.0 mg cm−2, the cathode still delivers a reversible capacity of 560.2 mA h g−1 at 0.1C after 100 cycles.


2016 ◽  
Vol 4 (35) ◽  
pp. 13572-13581 ◽  
Author(s):  
Jiadeng Zhu ◽  
Erol Yildirim ◽  
Karim Aly ◽  
Jialong Shen ◽  
Chen Chen ◽  
...  

A multi-functional nanofiber membrane significantly improves the overall performance of Li–S batteries.


Author(s):  
Quinton J Meisner ◽  
Sisi Jiang ◽  
Pengfei Cao ◽  
Tobias Glossmann ◽  
Andreas Hintennach ◽  
...  

The use of solid polymer electrolytes has previously proven to be an effective approach to address the lithium polysulfide dissolution and high electrode interfacial impedance of Li-S batteries via an...


2021 ◽  
Vol 56 ◽  
pp. 343-352 ◽  
Author(s):  
Jintao Liu ◽  
Shuhao Xiao ◽  
Le Chang ◽  
Long Lai ◽  
Rui Wu ◽  
...  

2019 ◽  
Vol 55 (80) ◽  
pp. 12056-12059 ◽  
Author(s):  
Zhenpu Shi ◽  
Lan Wang ◽  
Huifang Xu ◽  
Junqiang Wei ◽  
Hongyun Yue ◽  
...  

CoPcCl catalyzed the Li2S decomposition and enhanced the sulfur utilization remarkably.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ning Kang ◽  
Yuxiao Lin ◽  
Li Yang ◽  
Dongping Lu ◽  
Jie Xiao ◽  
...  

Abstract While high sulfur loading has been pursued as a key parameter to build realistic high-energy lithium-sulfur batteries, less attention has been paid to the cathode porosity, which is much higher in sulfur/carbon composite cathodes than in traditional lithium-ion battery electrodes. For high-energy lithium-sulfur batteries, a dense electrode with low porosity is desired to minimize electrolyte intake, parasitic weight, and cost. Here we report the profound impact on the discharge polarization, reversible capacity, and cell cycling life of lithium-sulfur batteries by decreasing cathode porosities from 70 to 40%. According to the developed mechanism-based analytical model, we demonstrate that sulfur utilization is limited by the solubility of lithium-polysulfides and further conversion from lithium-polysulfides to Li2S is limited by the electronically accessible surface area of the carbon matrix. Finally, we predict an optimized cathode porosity to maximize the cell level volumetric energy density without sacrificing the sulfur utilization.


Sign in / Sign up

Export Citation Format

Share Document