Photochemical transformations of thiolated polyethylene glycol coatings on gold nanoparticles

2016 ◽  
Vol 3 (5) ◽  
pp. 1090-1102 ◽  
Author(s):  
Stacey M. Louie ◽  
Justin M. Gorham ◽  
Eric A. McGivney ◽  
Jingyu Liu ◽  
Kelvin B. Gregory ◽  
...  

Photochemical reactions can cause significant transformations of manufactured nanomaterials and their surface coatings in sunlit environments. In this study, loss of thiolated polyethylene glycol from gold nanoparticle surfaces by chain scission was observed under UV irradiation and resulted in diminished colloidal stability.

MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3353-3360
Author(s):  
Susana Helena Arellano Ramírez ◽  
Perla García Casillas ◽  
Christian Chapa González

AbstractA significant area of research is biomedical applications of nanoparticles which involves efforts to control the physicochemical properties through simple and scalable processes. Gold nanoparticles have received considerable attention due to their unique properties that they exhibit based on their morphology. Gold nanospheres (AuNSs) and nanorods (AuNRs) were prepared with a seed-mediated method followed of polyethylene glycol (PEG)-coating. The seeds were prepared with 0.1 M cetyltrimethyl-ammonium bromide (CTAB), 0.005 M chloroauric acid (HAuCl4), and 0.01 M sodium borohydride (NaBH4) solution. Gold nanoparticles with spherical morphology was achieved by growth by aggregation at room temperature, while to achieve the rod morphology 0.1 M silver nitrate (AgNO3) and 0.1 M ascorbic acid solution were added. The gold nanoparticles obtained by the seed-mediated synthesis have spherical or rod shapes, depending on the experimental conditions, and a uniform particle size. Surface functionalization was developed using polyethylene glycol. Morphology, and size distribution of AuNPs were evaluated by Field Emission Scanning Electron Microscopy. The average size of AuNSs, and AuNRs was 7.85nm and 7.96 x 31.47nm respectively. Fourier transform infrared spectrometry was performed to corroborate the presence of PEG in the AuNPs surface. Additionally, suspensions of AuNSs and AuNRs were evaluated by UV-Vis spectroscopy. Gold nanoparticles were stored for several days at room temperature and it was observed that the colloidal stability increased once gold nanoparticles were coated with PEG due to the shield formed in the surface of the NPs and the increase in size which were 9.65±1.90 nm of diameter for AuNSs and for AuNRs were 29.03±5.88 and 8.39±1.02 nm for length and transverse axis, respectively.


2016 ◽  
Vol 15 (2) ◽  
pp. 181-186
Author(s):  
Ming-Hao Yao ◽  
Jie Yang ◽  
Dong-Hui Zhao ◽  
Rui-Xue Xia ◽  
Rui-Mei Jin ◽  
...  

A facile method for in situ fabrication of three-dimensional gold nanoparticles micropatterns throughout a polyethylene glycol hydrogel substrate has been developed by combining photochemical synthesis of gold nanoparticles with photolithography technology.


2015 ◽  
Vol 39 (4) ◽  
pp. 2489-2496 ◽  
Author(s):  
Gianfranco Sabbatella ◽  
Simonetta Antonaroli ◽  
Marco Diociauti ◽  
Alessandro Nucara ◽  
Marilena Carbone

Novel proton caged compounds have been synthesized, with a sulphur bridge to bind gold nanoparticles and release protons upon UV irradiation.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Alaaldin M. Alkilany ◽  
Alaa I. Bani Yaseen ◽  
Mohammed H. Kailani

Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm) in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA) grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.


Soft Matter ◽  
2021 ◽  
Author(s):  
M. Ali Aboudzadeh ◽  
Joscha Kruse ◽  
Maria Sanromán-Iglesias ◽  
Daniele Cangialosi ◽  
Ángel Alegría ◽  
...  

The colloidal stability of metal nanoparticles is tremendously dependent on the thermal behavior of polymer brushes. Neat polyethylene glycol (PEG) presents an unconventional upper critical solution temperature in ethanol, where...


2016 ◽  
Vol 3 (5) ◽  
pp. 1144-1152 ◽  
Author(s):  
M. C. Surette ◽  
J. A. Nason

Character of engineered surface coatings plays a significant role in controlling ENM interactions with model NOM macromolecules.


2018 ◽  
Vol 25 (12) ◽  
pp. 1433-1445 ◽  
Author(s):  
Stanley Anniebell ◽  
Subash C.B. Gopinath

Background: Research interest on the properties of polymer conjugated gold nanoparticle (GNP) in biomedicine is rapidly rising because of the extensive evidences for their unique properties. In the field of biomedicine, GNPs have been widely used because of their inertness and low levels of cytotoxicity. Therefore, when exposed to cells, they are less prone to exert damaging effects. GNPs are capable of being functionalized as desired and are ideal as they do not encourage undesired side reactions that might counter react with the intention of the functionalization. Biofouling is an occurrence that takes place at cellular and biological molecular level, binds non-specifically on the detection surface and forms a wrong output. This undesired incidence can be avoided by conjugating the surface of biomolecules with polymers. Densely packed repeating chains of polymers such as polyethylene glycol are capable of decreasing non-specific reactions. Applications of polymer conjugated GNPs in the field of biomedicine are as biosensors, delivery and therapeutic agents. Conclusion: Therefore, the properties and applications of polymer conjugated GNPs are studied widely as overviewed here.


Sign in / Sign up

Export Citation Format

Share Document