scholarly journals Tungsten carbide nanoparticles in simulated surface water with natural organic matter: dissolution, agglomeration, sedimentation and interaction with Daphnia magna

2017 ◽  
Vol 4 (4) ◽  
pp. 886-894 ◽  
Author(s):  
Jonas Hedberg ◽  
Mikael T. Ekvall ◽  
Lars-Anders Hansson ◽  
Tommy Cedervall ◽  
Inger Odnevall Wallinder

Nano-sized tungsten carbide shows no acute toxicity for Daphnia magna and agglomeration and sedimentation due to the lack of interaction with NOM.

2020 ◽  
Vol 198 ◽  
pp. 272-283
Author(s):  
Camilo L. Guerrero-Romero ◽  
Dolly Revelo ◽  
Alejandra Caicedo ◽  
Marcela Botina ◽  
Ana M. García-Mora ◽  
...  

2019 ◽  
Vol 5 (12) ◽  
pp. 2242-2250
Author(s):  
Xue Shen ◽  
Baoyu Gao ◽  
Kangying Guo ◽  
Qinyan Yue

Coagulation prior to the ultrafiltration (UF) process was implemented to improve natural organic matter (NOM) removal and membrane permeability.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 238
Author(s):  
Fangshu Qu ◽  
Zhimeng Yang ◽  
Shanshan Gao ◽  
Huarong Yu ◽  
Junguo He ◽  
...  

To understand impacts of organic adhesion on membrane fouling, ultrafiltration (UF) membrane fouling by dissolved natural organic matter (NOM) was investigated in the presence of background cations (Na+ and Ca2+) at typical concentrations in surface water. Moreover, NOM adhesion on the UF membrane was investigated using atomic force microscopy (AFM) with colloidal probes and a quartz crystal microbalance with dissipation monitoring (QCM-D). The results indicated that the adhesion forces at the NOM-membrane interface increased in the presence of background cations, particularly Ca2+, and that the amount of adhered NOM increased due to reduced electrostatic repulsion. However, the membrane permeability was almost not affected by background cations in the pore blocking-dominated phase but was aggravated to some extent in the cake filtration-governed phase. More importantly, the irreversible NOM fouling was not correlated with the amount of adhered NOM. The assumption for membrane autopsies is doubtful that retained or adsorbed organic materials are necessarily a primary cause of membrane fouling, particularly the irreversible fouling.


2008 ◽  
Vol 42 (16) ◽  
pp. 6218-6223 ◽  
Author(s):  
Sanly Liu ◽  
May Lim ◽  
Rolando Fabris ◽  
Christopher Chow ◽  
Mary Drikas ◽  
...  

2002 ◽  
Vol 36 (9) ◽  
pp. 2357-2371 ◽  
Author(s):  
Patricia A. Maurice ◽  
Michael J. Pullin ◽  
Stephen E. Cabaniss ◽  
Qunhui Zhou ◽  
Ksenija Namjesnik-Dejanovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document