scholarly journals Modelling metal centres, acid sites and reaction mechanisms in microporous catalysts

2016 ◽  
Vol 188 ◽  
pp. 235-255 ◽  
Author(s):  
Alexander J. O'Malley ◽  
A. J. Logsdail ◽  
A. A. Sokol ◽  
C. R. A. Catlow

We discuss the role of QM/MM (embedded cluster) computational techniques in catalytic science, in particular their application to microporous catalysis. We describe the methodologies employed and illustrate their utility by briefly summarising work on metal centres in zeolites. We then report a detailed investigation into the behaviour of methanol at acidic sites in zeolites H-ZSM-5 and H-Y in the context of the methanol-to-hydrocarbons/olefins process. Studying key initial steps of the reaction (the adsorption and subsequent methoxylation), we probe the effect of framework topology and Brønsted acid site location on the energetics of these initial processes. We find that although methoxylation is endothermic with respect to the adsorbed system (by 17–56 kJ mol−1 depending on the location), there are intriguing correlations between the adsorption/reaction energies and the geometries of the adsorbed species, of particular significance being the coordination of methyl hydrogens. These observations emphasise the importance of adsorbate coordination with the framework in zeolite catalysed conversions, and how this may vary with framework topology and site location, particularly suited to investigation by QM/MM techniques.

2021 ◽  
Author(s):  
Andrew Logsdail ◽  
Richard Catlow ◽  
Stefan A. F. Nastase

<div>The conversion of methanol-to-hydrocarbons (MTH) is known to occur via an autocatalytic process in zeolites, where framework-bound methoxy species play a pivotal role, especially during catalyst induction. Recent NMR and FT-IR experimental studies suggest that methoxylated zeolites are able to produce hydrocarbons by a mechanism involving carbene migration and association. In order to understand these observations, we have performed QM/MM computational investigations on a range of reaction mechanisms for the reaction of zeolite bound methoxy and carbene groups, which are proposed to initiate hydrocarbon formation in the MTH process. Our simulations demonstrate that it is kinetically unfavourable for methyl species to form on the framework away from the zeolite acid site, and both kinetically and thermodynamically unfavourable for methyl groups to migrate through the framework and aggregate around an acid site. Formation of carbene moieties was considered as an alternative pathway to the formation of C-C bonds; however, the reaction energy for conversion of a methyl to a carbene is unfavourable. Metadynamics simulations help confirm further that methyl species at the framework acid sites would be more reactive towards formed C<sub>2+</sub> species, rather than inter-framework migration and that the role of carbenes in the formation of the first –C bond will be via a concerted type of mechanism rather than stepwise. </div>


2021 ◽  
Author(s):  
Andrew Logsdail ◽  
Richard Catlow ◽  
Stefan A. F. Nastase

<div>The conversion of methanol-to-hydrocarbons (MTH) is known to occur via an autocatalytic process in zeolites, where framework-bound methoxy species play a pivotal role, especially during catalyst induction. Recent NMR and FT-IR experimental studies suggest that methoxylated zeolites are able to produce hydrocarbons by a mechanism involving carbene migration and association. In order to understand these observations, we have performed QM/MM computational investigations on a range of reaction mechanisms for the reaction of zeolite bound methoxy and carbene groups, which are proposed to initiate hydrocarbon formation in the MTH process. Our simulations demonstrate that it is kinetically unfavourable for methyl species to form on the framework away from the zeolite acid site, and both kinetically and thermodynamically unfavourable for methyl groups to migrate through the framework and aggregate around an acid site. Formation of carbene moieties was considered as an alternative pathway to the formation of C-C bonds; however, the reaction energy for conversion of a methyl to a carbene is unfavourable. Metadynamics simulations help confirm further that methyl species at the framework acid sites would be more reactive towards formed C<sub>2+</sub> species, rather than inter-framework migration and that the role of carbenes in the formation of the first –C bond will be via a concerted type of mechanism rather than stepwise. </div>


1999 ◽  
Vol 64 (1) ◽  
pp. 168-176 ◽  
Author(s):  
Edita Rojasová ◽  
Agáta Smiešková ◽  
Pavol Hudec ◽  
Zdenek Židek

Aromatization of n-hexane over zinc-modified ZSM-5 zeolites was investigated. It was shown that incorporation of zinc by ion exchange into cationic positions of NH4-ZSM-5 zeolite causes acid-site strength redistribution and generation of new relatively strong Lewis acid sites in zeolite increasing the selectivity of n-hexane aromatization in comparison with the parent NH4-ZSM-5 zeolite. Simultaneous presence of Lewis and Broensted acid sites in ZSM-5 zeolite does not affect the strength of Broensted acid sites in zeolite. For the activity/selectivity of aromatization of n-hexane on Zn-modified ZSM-5 zeolites, the amount of Zn and its localization in the cationic positions are decisive. The reaction of n-hexane can be also initiated by the Zn species alone in the cationic positions. ZnO species alone as an extraframework phase was found inactive in the catalyst for aromatization of n-hexane. The influence of ZnO addition on the performance of pure ammonium forms of ZSM-5 zeolites in n-hexane conversion is a result of partial migration of zinc into cationic positions of zeolite by solid-state ion exchange.


2016 ◽  
Vol 18 (34) ◽  
pp. 23746-23754 ◽  
Author(s):  
Zhen Guo ◽  
De Sheng Theng ◽  
Karen Yuanting Tang ◽  
Lili Zhang ◽  
Lin Huang ◽  
...  

Lewis acidic sites on the surface of lanthanum phosphate nano-rods play a crucial role on the catalytic dehydration of lactic acid to acrylic acid.


2019 ◽  
Vol 9 (2) ◽  
pp. 366-376 ◽  
Author(s):  
Christophe J. Baranowski ◽  
Ali M. Bahmanpour ◽  
Florent Héroguel ◽  
Jeremy S. Luterbacher ◽  
Oliver Kröcher

By varying acid site accessibility, we demonstrated that polyoxymethylene dimethyl ethers suffered from severe internal diffusion inside a MFI zeolite.


Author(s):  
Yi Zheng ◽  
Junqing Shi ◽  
Haiming Xu ◽  
Xingzhi Jin ◽  
Yujing Ou ◽  
...  

Modulation of surface acid sites (SAS) can effectively enhance the efficiency of reactive oxygen species (ROS) production in recent. However, the role of SAS has been neglected for photo-reduction reactions....


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 488
Author(s):  
Katarzyna Stawicka ◽  
Maciej Trejda ◽  
Maria Ziolek

Niobium containing SBA-15 was prepared by two methods: impregnation with different amounts of ammonium niobate(V) oxalate (Nb-15/SBA-15 and Nb-25/SBA-15 containing 15 wt.% and 25 wt.% of Nb, respectively) and mixing of mesoporous silica with Nb2O5 followed by heating at 500 °C (Nb2O5/SBA-15). The use of these two procedures allowed obtaining materials with different textural/surface properties determined by N2 adsorption/desorption isotherms, XRD, UV-Vis, pyridine, and NO adsorption combined with FTIR spectroscopy. Nb2O5/SBA-15 contained exclusively crystalline Nb2O5 on the SBA-15 surface, whereas the materials prepared by impregnation had both metal oxide and niobium incorporated into the silica matrix. The niobium species localized in silica framework generated Brønsted (BAS) and Lewis (LAS) acid sites. The inclusion of niobium into SBA-15 skeleton was crucial for the achievement of high catalytic performance. The strongest BAS were on Nb-25/SBA-15, whereas the highest concentration of BAS and LAS was on Nb-15/SBA-15 surface. Nb2O5/SBA-15 material possessed only weak LAS and BAS. The presence of the strongest BAS (Nb-25/SBA-15) resulted in the highest dehydration activity, whereas a high concentration of BAS was unfavorable. Silylation of niobium catalysts prepared by impregnation reduced the number of acidic sites and significantly increased acrolein yield and selectivity (from ca. 43% selectivity for Nb-25/SBA-15 to ca. 61% for silylated sample). This was accompanied by a considerable decrease in coke formation (from 47% selectivity for Nb-25/SBA-15 to 27% for silylated material).


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2015
Author(s):  
Łukasz Kuterasiński ◽  
Małgorzata Smoliło-Utrata ◽  
Joanna Kaim ◽  
Wojciech Rojek ◽  
Jerzy Podobiński ◽  
...  

The aim of the present paper is to study the speciation and the role of different active site types (copper species and Brønsted acid sites) in the direct synthesis of furan from furfural catalyzed by copper-exchanged FAU31 zeolite. Four series of samples were prepared by using different conditions of post-synthesis treatment, which exhibit none, one or two types of active sites. The catalysts were characterized by XRD, low-temperature sorption of nitrogen, SEM, H2-TPR, NMR and by means of IR spectroscopy with ammonia and CO sorption as probe molecules to assess the types of active sites. All catalyst underwent catalytic tests. The performed experiments allowed to propose the relation between the kind of active centers (Cu or Brønsted acid sites) and the type of detected products (2-metylfuran and furan) obtained in the studied reaction. It was found that the production of 2-methylfuran (in trace amounts) is determined by the presence of the redox-type centers, while the protonic acid sites are mainly responsible for the furan production and catalytic activity in the whole temperature range. All studied catalysts revealed very high susceptibility to coking due to polymerization of furfural.


2004 ◽  
Vol 77 (3) ◽  
pp. 512-541 ◽  
Author(s):  
Geert Heideman ◽  
Rabin N. Datta ◽  
Jacques W. M. Noordermeer ◽  
Ben van Baarle

Abstract This review provides relevant background information about the vulcanization process, as well as the chemistry of thiuram- and sulfenamide-accelerated sulfur vulcanization with emphasis on the role of activators, to lay a base for further research. It commences with an introduction of sulfur vulcanization and a summary of the reaction mechanisms as described in literature, followed by the role of activators, particularly ZnO. The various possibilities to reduce ZnO levels in rubber compounding, that have been proposed in literature, are reviewed. A totally different approach to reduce ZnO is described in the paragraphs about the various possible roles of multifunctional additives (MFA) in rubber vulcanization. Another paragraph is dedicated to the role of amines in rubber vulcanization, in order to provide some insight in the underlying chemical mechanisms of MFA systems. Furthermore, an overview of Model Compound Vulcanization (MCV) with respect to different models and activator/accelerator systems is given. In the last part of this review, the various functions of ZnO in rubber are summarized. It clearly reveals that the role of ZnO and zinc compounds is very complex and still deserves further clarification.


Sign in / Sign up

Export Citation Format

Share Document