High-quality infrared imaging with graphene photodetectors at room temperature

Nanoscale ◽  
2016 ◽  
Vol 8 (35) ◽  
pp. 16065-16072 ◽  
Author(s):  
Nan Guo ◽  
Weida Hu ◽  
Tao Jiang ◽  
Fan Gong ◽  
Wenjin Luo ◽  
...  
2021 ◽  
Vol 119 (6) ◽  
pp. 062103
Author(s):  
A. Brovko ◽  
P. Rusian ◽  
L. Chernyak ◽  
A. Ruzin

2009 ◽  
Vol 2 (1) ◽  
pp. 011003 ◽  
Author(s):  
Kazuhiro Sato ◽  
Jitsuo Ohta ◽  
Shigeru Inoue ◽  
Atsushi Kobayashi ◽  
Hiroshi Fujioka

2014 ◽  
Vol 07 (06) ◽  
pp. 1440007
Author(s):  
Michal Szot ◽  
Krzysztof Dybko ◽  
Piotr Dziawa ◽  
Leszek Kowalczyk ◽  
Viktor Domukhovski ◽  
...  

The electric and thermoelectric properties of novel, CdTe / PbTe layered nanocomposite material are investigated. The molecular beam epitaxy (MBE) method was used for preparation of samples with well controlled distances (from 20 to 70 nm) between the layers of CdTe nanograins embedded in PbTe thermoelectric matrix as well as with number of these layers from 2 to 10. The Hall effect measurements performed in temperature range from 4–300 K revealed that carrier mobility is strongly affected by scattering on CdTe grain boundaries. The observation of Shubnikov-de Haas oscillations confirms high quality of the samples and allows determination of effective mass of conducting electrons m* = 0.04m0. The measurements of the room temperature Seebeck coefficient together with electrical conductivity lead to the power factors which are comparable to those reported in PbTe / CdTe polycrystalline solid solutions.


1999 ◽  
Vol 4 (S1) ◽  
pp. 239-243
Author(s):  
J.B. Li ◽  
Hui Yang ◽  
L.X. Zheng ◽  
D.P. Xu ◽  
Y.T. Wang

We report on the growth of high-quality cubic phase InGaN on GaAs by MOCVD. The cubic InGaN layers are grown on cubic GaN buffer layers on GaAs (001) substrates. The surface morphology of the films are mirror-like. The cubic nature of the InGaN films is obtained by X-ray diffraction (XRD) measurements. The InGaN layers show strong photoluminescence (PL) at room temperature. Neither emission peak from wurtzite GaN nor yellow luminescence is observed in our films. The highest In content as determined by XRD is about 17% with an PL emission wavelength of 450 nm. The FWHM of the cubic InGaN PL peak are 153 meV and 216 meV for 427 nm and 450 nm emissions, respectively. It is found that the In compositions determined from XRD are not in agreement with those estimated from PL measurements. The reasons for this disagreement are discussed.


2019 ◽  
Vol 7 (41) ◽  
pp. 12869-12875 ◽  
Author(s):  
Liyun Zhao ◽  
Qiuyu Shang ◽  
Yan Gao ◽  
Bao Jin ◽  
Tianyou Zhai ◽  
...  

Room temperature two-photon pumped green-color whispering-gallery-mode lasing from cadmium sulfide microflakes with dimensions below 60 nm.


2014 ◽  
Vol 7 (5) ◽  
pp. 1643-1647 ◽  
Author(s):  
Ya You ◽  
Xing-Long Wu ◽  
Ya-Xia Yin ◽  
Yu-Guo Guo

High-quality Prussian blue crystals with a small number of vacancies and a low water content show high specific capacity and remarkable cycle stability as cathode materials for Na-ion batteries.


1998 ◽  
Vol 537 ◽  
Author(s):  
M. Suscavage ◽  
M. Harris ◽  
D. Bliss ◽  
P. Yip ◽  
S.-Q. Wang ◽  
...  

AbstractZinc Oxide crystals have historically been grown in hydrothermal autoclaves with a basic mineralizer; however, doubts have been raised about the quality of such crystals because they have often exhibited large x-ray rocking curve widths and low photoluminescence (PL) yield with large linewidths. Several ZnO crystals were grown hydrothermally and sliced parallel to the c-plane. This resulted in opposite surfaces (the C+ and C-) exhibiting pronounced chemical and mechanical differences. Different surface treatments were investigated and compared by PL both at room temperature and liquid helium temperatures, and by double axis X-ray rocking curve measurements. The high quality of hydrothermally-grown ZnO is substantiated by the narrow rocking curve widths and sharp PL peaks obtained. A critical factor in obtaining these results was found to be surface preparation.


Sign in / Sign up

Export Citation Format

Share Document