Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network

Nanoscale ◽  
2017 ◽  
Vol 9 (33) ◽  
pp. 11929-11938 ◽  
Author(s):  
Xiang Zhang ◽  
Chunsheng Shi ◽  
Enzuo Liu ◽  
Fang He ◽  
Liying Ma ◽  
...  

We demonstrate an innovative and effectivein situprocessing strategy for the fabrication of metal matrix composites reinforced with a discontinuous 3D graphene-like network.

2018 ◽  
Vol 770 ◽  
pp. 25-30 ◽  
Author(s):  
Harshpreet Singh ◽  
Muhammad Dilawer Hayat ◽  
Raj Das ◽  
Xin Gang Wang ◽  
Peng Cao

Metal matrix composites (MMCs) are the new generation materials that combine both the metallic properties (ductility and toughness) and ceramic characteristics (high strength and modulus), leading to higher strength in shear and compression, at higher service temperatures. Titanium matrix composites possess light weight, high strength and good corrosion resistance and are used as structural materials in automobiles and aerospace industries. In the present study, in situ Ti-TiB composites were fabricated by reinforcing (2, 5, 10 and 20 wt. %) TiB2 powder (mean size <10 microns) into titanium powder (mean particle size ~26.58 μm) and subsequently consolidated by vacuum sintering at 1300 °C for 3 h. X-ray diffraction, scanning electron microscopy (SEM) and density measurements were carried out to characterize the prepared composites. The results showed that all compositions led to high density composites, and the hardness of the composites increased with an increase in the amount of reinforcement. The mechanism of vacuum sintering is yet to be understood in the consolidation of composites and the detailed evolution of microstructure needs to be analysed.


2007 ◽  
Vol 345-346 ◽  
pp. 1261-1264 ◽  
Author(s):  
Quang Pham ◽  
Seung Chae Yoon ◽  
Chun Hee Bok ◽  
Hyoung Seop Kim

Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nanotechnologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their high Young’s modulus (≈ 1 TPa), tensile strength (≈ 200 GPa) and high elongation (10-30%) as well as high chemical stability, CNTs are considered to be attractive reinforcement materials for light weight and high strength metal matrix composites. In this paper, we described a scheme for multi-scale modeling for the elastic and plastic properties of CNT/metal nanocomposites using the numerical analyses of the three-dimensional finite element method based on the continuum mechanics of a unit cell. In particular, the quantitative effects of the distribution and the array of the CNT reinforcement (viz. cross-over, vertical and horizontal distributions) on the elasticity and plasticity of the nanocomposites were investigated and the anisotropic characteristics of elasticity and plasticity of the nanocomposites were linked with the extremely high aspect ratio of CNTs.


2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

2019 ◽  
Vol 61 (8) ◽  
pp. 779-786
Author(s):  
Bellamballi Munivenkatappan Muthami Selvan ◽  
Veeramani Anandakrishnan ◽  
Muthukannan Duraiselvam ◽  
Sivaraj Sundarameenakshi

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


2021 ◽  
Vol 30 ◽  
pp. 2633366X2092971
Author(s):  
Ying Ba ◽  
Shu Sun

Fiber-reinforced metal matrix composites have mechanical properties highly dependent on directions, possessing high strength and fatigue resistance in fiber longitudinal direction achieved by weak interface bonding. However, the disadvantage of weak interface combination is the reduction of transversal performances. In this article, tensile and fatigue properties of carbon fiber-reinforced 5056 aluminum alloy matrix (Cf/5056Al) composite under the condition of medium-strength interface combination are carried out. The fatigue damage mechanisms of Cf/5056Al composite under tension–tension and tension–compression loads are not the same, but the fatigue life curves are close, which may be the result of the medium-strength interface combination.


Sign in / Sign up

Export Citation Format

Share Document