Effects of heterocyclic-based head group modifications on the structure–activity relationship of tocopherol-based lipids for non-viral gene delivery

2016 ◽  
Vol 14 (28) ◽  
pp. 6857-6870 ◽  
Author(s):  
Mallikarjun Gosangi ◽  
Thasneem Yoosuf Mujahid ◽  
Vijaya Gopal ◽  
Srilakshmi V. Patri

Gene therapy, a promising strategy for the delivery of therapeutic nucleic acids, is greatly dependent on the development of efficient vectors.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 446
Author(s):  
Henrique Faneca

The advances in the field of gene therapy have significantly improved the possibility for nucleic acids as highly promising agents for the treatment of both inherited and acquired human diseases [...]


2015 ◽  
Vol 12 (12) ◽  
pp. 4321-4328 ◽  
Author(s):  
Nicholas J. Baumhover ◽  
Jason T. Duskey ◽  
Sanjib Khargharia ◽  
Christopher W. White ◽  
Samuel T. Crowley ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18681-18689 ◽  
Author(s):  
De-Chun Chang ◽  
Yi-Mei Zhang ◽  
Ji Zhang ◽  
Yan-Hong Liu ◽  
Xiao-Qi Yu

The structure–activity relationships of cyclen-based cationic lipids as non-viral gene delivery vectors were studied and clarified.


Author(s):  
Ilona Uzieliene ◽  
Ursule Kalvaityte ◽  
Eiva Bernotiene ◽  
Ali Mobasheri

Strategies for delivering nucleic acids into damaged and diseased tissues have been divided into two major areas: viral and non-viral gene therapy. In this mini-review article we discuss the application of gene therapy for the treatment of osteoarthritis (OA), one of the most common forms of arthritis. We focus primarily on non-viral gene therapy and cell therapy. We briefly discuss the advantages and disadvantages of viral and non-viral gene therapy and review the nucleic acid transfer systems that have been used for gene delivery into articular chondrocytes in cartilage from the synovial joint. Although viral gene delivery has been more popular due to its reported efficiency, significant effort has gone into enhancing the transfection efficiency of non-viral delivery, making non-viral approaches promising tools for further application in basic, translational and clinical studies on OA. Non-viral gene delivery technologies have the potential to transform the future development of disease-modifying therapeutics for OA and related osteoarticular disorders. However, further research is needed to optimize transfection efficiency, longevity and duration of gene expression.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 745 ◽  
Author(s):  
Raj Rai ◽  
Saniya Alwani ◽  
Ildiko Badea

The field of polymeric nanoparticles is quickly expanding and playing a pivotal role in a wide spectrum of areas ranging from electronics, photonics, conducting materials, and sensors to medicine, pollution control, and environmental technology. Among the applications of polymers in medicine, gene therapy has emerged as one of the most advanced, with the capability to tackle disorders from the modern era. However, there are several barriers associated with the delivery of genes in the living system that need to be mitigated by polymer engineering. One of the most crucial challenges is the effectiveness of the delivery vehicle or vector. In last few decades, non-viral delivery systems have gained attention because of their low toxicity, potential for targeted delivery, long-term stability, lack of immunogenicity, and relatively low production cost. In 1987, Felgner et al. used the cationic lipid based non-viral gene delivery system for the very first time. This breakthrough opened the opportunity for other non-viral vectors, such as polymers. Cationic polymers have emerged as promising candidates for non-viral gene delivery systems because of their facile synthesis and flexible properties. These polymers can be conjugated with genetic material via electrostatic attraction at physiological pH, thereby facilitating gene delivery. Many factors influence the gene transfection efficiency of cationic polymers, including their structure, molecular weight, and surface charge. Outstanding representatives of polymers that have emerged over the last decade to be used in gene therapy are synthetic polymers such as poly(l-lysine), poly(l-ornithine), linear and branched polyethyleneimine, diethylaminoethyl-dextran, poly(amidoamine) dendrimers, and poly(dimethylaminoethyl methacrylate). Natural polymers, such as chitosan, dextran, gelatin, pullulan, and synthetic analogs, with sophisticated features like guanidinylated bio-reducible polymers were also explored. This review outlines the introduction of polymers in medicine, discusses the methods of polymer synthesis, addressing top down and bottom up techniques. Evaluation of functionalization strategies for therapeutic and formulation stability are also highlighted. The overview of the properties, challenges, and functionalization approaches and, finally, the applications of the polymeric delivery systems in gene therapy marks this review as a unique one-stop summary of developments in this field.


Sign in / Sign up

Export Citation Format

Share Document