In vitro repair of a defective EGFP transcript and translation into a functional protein

2016 ◽  
Vol 14 (28) ◽  
pp. 6729-6737 ◽  
Author(s):  
Darko Balke ◽  
Aileen Becker ◽  
Sabine Müller

Twin ribozymes mediate the exchange of a short patch of RNA against an exogenous oligonucleotide within a suitable RNA substrate.

Parasitology ◽  
2012 ◽  
Vol 139 (8) ◽  
pp. 998-1004 ◽  
Author(s):  
X. CUI ◽  
T. LEI ◽  
D. Y. YANG ◽  
P. HAO ◽  
Q. LIU

SUMMARYImmune mapped protein 1 (IMP1) is a newly discovered protein in Eimeria maxima. It is recognized as a potential vaccine candidate against E. maxima and a highly conserved protein in apicomplexan parasites. Although the Neospora caninum IMP1 (NcIMP1) orthologue of E. maxima IMP1 was predicted in the N. caninum genome, it was still not identified and characterized. In this study, cDNA sequence encoding NcIMP1 was cloned by RT-PCR from RNA isolated from Nc1 tachyzoites. NcIMP1 was encoded by an open reading frame of 1182 bp, which encoded a protein of 393 amino acids with a predicted molecular weight of 42·9 kDa. Sequence analysis showed that there was neither a signal peptide nor a transmembrane region present in the NcIMP1 amino acid sequence. However, several kinds of functional protein motifs, including an N-myristoylation site and a palmitoylation site were predicted. Recombinant NcIMP1 (rNcIMP1) was expressed in Escherichia coli and then purified rNcIMP1 was used to prepare specific antisera in mice. Mouse polyclonal antibodies raised against the rNcIMP1 recognized an approximate 43 kDa native IMP1 protein. Immunofluorescence analysis showed that NcIMP1 was localized on the membrane of N. caninum tachyzoites. The N-myristoylation site and the palmitoylation site were found to contribute to the localization of NcIMP1. Furthermore, the rNcIMP1-specific antibodies could inhibit cell invasion by N. caninum tachyzoites in vitro. All the results indicate that NcIMP1 is likely to be a membrane protein of N. caninum and may be involved in parasite invasion.


2012 ◽  
Vol 23 (22) ◽  
pp. 4444-4455 ◽  
Author(s):  
Flora Brozzi ◽  
Sophie Lajus ◽  
Frederique Diraison ◽  
Shavanthi Rajatileka ◽  
Katy Hayward ◽  
...  

Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)–anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.


2018 ◽  
Vol 46 (10) ◽  
pp. 2402-2413 ◽  
Author(s):  
Hiroshi Sasaki ◽  
Benjamin B. Rothrauff ◽  
Peter G. Alexander ◽  
Hang Lin ◽  
Riccardo Gottardi ◽  
...  

Background: Radial tears of the meniscus are a common knee injury, frequently resulting in osteoarthritis. To date, there are no established, effective treatments for radial tears. Adipose-derived stem cells (ASCs) may be an attractive cell source for meniscal regeneration because they can be quickly isolated in large number and are capable of undergoing induced fibrochondrogenic differentiation mediated by transforming growth factor β3 (TGF-β3). However, the use of ASCs for meniscal repair is largely unexplored. Hypothesis: ASC-seeded hydrogels with preloaded TGF-β3 will improve meniscal healing of radial tears, as modeled in an explant model. Study Design: Controlled laboratory study. Methods: With an institutional review board–exempted protocol, human ASCs were isolated from the infrapatellar fat pads of 3 donors, obtained after total knee replacement, and characterized. ASCs were encapsulated in photocrosslinkable methacrylated gelatin hydrogels to form 3-dimensional constructs, which were placed into tissue culture. The effect of TGF-β3—whether preloaded into the hydrogel or added as a soluble medium supplement—on matrix-sulfated proteoglycan deposition in the constructs was evaluated. A meniscal explant culture model was used to simulate meniscal repair. Cylindrical-shaped explants were excised from the inner avascular region of adult bovine menisci, and a radial tear was modeled by cutting perpendicular to the meniscal main fibers to the length of the radius. Six combinations of hydrogels—namely, acellular and ASC-seeded hydrogels supplemented with preloaded TGF-β3 (2 µg/mL) or soluble TGF-β3 (10 ng/mL) and without supplement—were injected into the radial tear and stabilized by photocrosslinking with visible light. At 4 and 8 weeks of culture, healing was assessed through histology, immunofluorescence staining, and mechanical testing. Results: ASCs isolated from the 3 donors exhibited colony-forming and multilineage differentiation potential. Hydrogels preloaded with TGF-β3 and those cultured in soluble TGF-β3 showed robust matrix-sulfated proteoglycan deposition. ASC-seeded hydrogels promoted superior healing as compared with acellular hydrogels, with preloaded or soluble TGF-β3 further improving histological scores and mechanical properties. Conclusion: These findings demonstrated that ASC-seeded hydrogels preloaded with TGF-β3 enhanced healing of radial meniscal tears in an in vitro meniscal repair model. Clinical Relevance: Injection delivery of ASCs in a TGF-β3-preloaded photocrosslinkable hydrogel represents a novel candidate strategy to repair meniscal radial tears and minimize further osteoarthritic joint degeneration.


1988 ◽  
Vol 8 (6) ◽  
pp. 2562-2571
Author(s):  
S Partono ◽  
A S Lewin

The terminal intron of the mitochondrial cob gene of Saccharomyces cerevisiae can undergo autocatalytic splicing in vitro. Efficient splicing of this intron required a high concentration of monovalent ion (1 M). We found that at a high salt concentration this intron was very active and performed many of the reactions described for other group I introns. The rate of the splicing reaction was dependent on the choice of the monovalent ion; the reaction intermediate, the intron-3' exon molecule, accumulated in NH4Cl but not in KCl. In addition, the intron was more reactive in KCl, accumulating in two different circular forms: one cyclized at the 5' intron boundary and the other at 236 nucleotides from the 5' end. These circular forms were able to undergo the opening and recyclization reactions previously described for the Tetrahymena rRNA intron. Cleavage of the 5' exon-intron boundary by the addition of GTP did not require the 3' terminus of the intron and the downstream exon. An anomalous guanosine addition at the 3' exon and at the middle of the intron was also detected. Hence, this intron, which requires a functional protein to splice in vivo, demonstrated a full spectrum of characteristic reactions in the absence of proteins.


2008 ◽  
Vol 467 (6) ◽  
pp. 1557-1567 ◽  
Author(s):  
Amy L. McNulty ◽  
J. Brice Weinberg ◽  
Farshid Guilak

2020 ◽  
pp. JVI.01654-20
Author(s):  
Ryan D. Estep ◽  
Aparna N. Govindan ◽  
Kristin Fitzpatrick ◽  
Tiffany C. Blair ◽  
S.A. Rahim Rezaee ◽  
...  

The CD200-CD200R pathway is involved in inhibition of immune responses, and the importance of this pathway to infectious disease is highlighted by the fact that viral CD200 (vCD200) molecules have been found to be encoded by several DNA viruses, including the human gammaherpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV), and the closely related rhesus macaque rhadinovirus (RRV). KSHV vCD200 is the most extensively studied vCD200 molecule, however, the only herpesvirus vCD200 molecule to be examined in vivo is that encoded by RRV. Our prior studies have demonstrated that RRV vCD200 is a functional CD200 homologue that is capable of affecting immune responses in vivo, and further, that RRV can express a secreted form of vCD200 (vCD200-Sec) during infection. Despite this information, RRV vCD200 has not been examined specifically for effects on RM CD200R signaling, and the functionality of vCD200-Sec has not been examined in any context. Thus, we developed an in vitro model system in which B cells expressing vCD200 were utilized to assess the effects of this molecule on the regulation of myeloid cells expressing RM CD200R, mimicking interactions that are predicted to occur in vivo. Our findings suggest that RRV vCD200 can bind and induce functional signals through RM CD200R, while vCD200-Sec represents a non-functional protein incapable of affecting CD200R signaling. We also provide the first demonstration of the function of RM CD200, which appears to possess more robust signaling capabilities than RRV vCD200, and also show that KSHV vCD200 does not efficiently induce signaling via RM CD200R.IMPORTANCE Viral CD200 homologues are encoded by KSHV and the closely related RRV. Though RRV vCD200 has been examined, questions still exist in regard to the ability of this molecule to induce signaling via rhesus macaque CD200R, as well as the potential function of a secreted form of vCD200. Further, all previous in vitro studies of RRV vCD200 have utilized an Fc fusion protein to examine functionality, which does not replicate the structural properties of the membrane-associated form of vCD200 that is naturally produced during RRV infection. In this study, we demonstrate for the first time that membrane-expressed RRV vCD200 is capable of inducing signal transduction via RM CD200R, while the secreted form of vCD200 appears to be non-functional. Further, we also demonstrate that RM CD200 induces signaling via RM CD200R, and is more robust than RRV vCD200, while KSHV vCD200 does not appear to induce efficient signaling via RM CD200R.


Author(s):  
Luitgard Mitzel-Landbeck ◽  
Gisela Schutz ◽  
Ulrich Hagen

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Sonisilpa Mohapatra ◽  
Heejun Choi ◽  
Xueliang Ge ◽  
Suparna Sanyal ◽  
James C. Weisshaar

ABSTRACT In vitro assays find that ribosomes form peptide bonds to proline (Pro) residues more slowly than to other residues. Ribosome profiling shows that stalling at Pro-Pro-X triplets is especially severe but is largely alleviated in Escherichia coli by the action of elongation factor EF-P. EF-P and its eukaryotic/archaeal homolog IF5A enhance the peptidyl transfer step of elongation. Here, a superresolution fluorescence localization and tracking study of EF-P–mEos2 in live E. coli provides the first in vivo information about the spatial distribution and on-off binding kinetics of EF-P. Fast imaging at 2 ms/frame helps to distinguish ribosome-bound (slowly diffusing) EF-P from free (rapidly diffusing) EF-P. Wild-type EF-P exhibits a three-peaked axial spatial distribution similar to that of ribosomes, indicating substantial binding. The mutant EF-PK34A exhibits a homogeneous distribution, indicating little or no binding. Some 30% of EF-P copies are bound to ribosomes at a given time. Two-state modeling and copy number estimates indicate that EF-P binds to 70S ribosomes during 25 to 100% of translation cycles. The timescale of the typical diffusive search by free EF-P for a ribosome-binding site is τfree ≈ 16 ms. The typical residence time of an EF-P on the ribosome is very short, τbound ≈ 7 ms. Evidently, EF-P binds to ribosomes during many or most elongation cycles, much more often than the frequency of Pro-Pro motifs. Emptying of the E site during part of the cycle is consistent with recent in vitro experiments indicating dissociation of the deacylated tRNA upon translocation. IMPORTANCE Ribosomes translate the codon sequence within mRNA into the corresponding sequence of amino acids within the nascent polypeptide chain, which in turn ultimately folds into functional protein. At each codon, bacterial ribosomes are assisted by two well-known elongation factors: EF-Tu, which aids binding of the correct aminoacyl-tRNA to the ribosome, and EF-G, which promotes tRNA translocation after formation of the new peptide bond. A third factor, EF-P, has been shown to alleviate ribosomal pausing at rare Pro-Pro motifs, which are translated very slowly without EF-P. Here, we use superresolution fluorescence imaging to study the spatial distribution and ribosome-binding dynamics of EF-P in live E. coli cells. We were surprised to learn that EF-P binds to and unbinds from translating ribosomes during at least 25% of all elongation events; it may bind during every elongation cycle. Ribosomes translate the codon sequence within mRNA into the corresponding sequence of amino acids within the nascent polypeptide chain, which in turn ultimately folds into functional protein. At each codon, bacterial ribosomes are assisted by two well-known elongation factors: EF-Tu, which aids binding of the correct aminoacyl-tRNA to the ribosome, and EF-G, which promotes tRNA translocation after formation of the new peptide bond. A third factor, EF-P, has been shown to alleviate ribosomal pausing at rare Pro-Pro motifs, which are translated very slowly without EF-P. Here, we use superresolution fluorescence imaging to study the spatial distribution and ribosome-binding dynamics of EF-P in live E. coli cells. We were surprised to learn that EF-P binds to and unbinds from translating ribosomes during at least 25% of all elongation events; it may bind during every elongation cycle.


Sign in / Sign up

Export Citation Format

Share Document