Preparation and properties of thermally conductive polyimide/boron nitride composites

RSC Advances ◽  
2016 ◽  
Vol 6 (22) ◽  
pp. 18279-18287 ◽  
Author(s):  
Na Yang ◽  
Chen Xu ◽  
Jun Hou ◽  
Yanmei Yao ◽  
Qingxin Zhang ◽  
...  

Hexagonal boron nitride micro particles functionalized by γ-MPS, were used to fabricate PI/BN composites. The thermal conductivity of the composites with 40 wt% m-BN content was increased to 0.748 W m−1 K−1, 4.5 times higher than that of the pure PI.

2019 ◽  
Vol 3 (11) ◽  
pp. 2455-2462 ◽  
Author(s):  
Si-Wei Xiong ◽  
Pan Zhang ◽  
Yu Xia ◽  
Pei-Gen Fu ◽  
Jing-Gang Gai

We developed a thermally conductive and antimicrobial QACs@h-BN/LLDPE composites for thermal management of medically electronic devices, it was approximately 100% against both E. coli and S. aureus and its thermal conductivity can reach 1.115 W m−1 K−1.


2019 ◽  
Vol 2019 (NOR) ◽  
pp. 000001-00005
Author(s):  
Ya Liu ◽  
Nan Wang ◽  
Lilei Ye ◽  
Abdelhafid Zehri ◽  
Andreas Nylander ◽  
...  

Abstract Thermally conductive materials with electrically insulating properties have been extensively investigated for thermal management of electronic devices. The combined properties of high thermal conductivity, structural stability, corrosion resistance and electric resistivity make hexagonal boron nitride (h-BN) a promising candidate for this purpose. Theoretical studies have revealed that h-BN has a high in-plane thermal conductivity up to 400 - 800 W m−1 K−1 at room temperature. However, it is still a big challenge to achieve high thermally conductive h-BN thick films that are commercially feasible due to its poor mechanical properties. On the other hand, many polymers exhibit advantages for flexibility. Thus, combining the merits of polymer and the high thermal conductivity of h-BN particles is considered as a promising solution for this issue. In this work, orientated PVP/h-BN films were prepared by electrospinning and a subsequent mechanical pressing process. With the optimized h-BN loading, a PVP/h-BN composite film with up to 22 W m−1 K−1 and 0.485 W m−1 K−1 for in-plane and through-plane thermal conductivity can be achieved, respectively. We believe this work can help accelerate the development of h-BN for thermal management applications.


2020 ◽  
Vol 32 (9) ◽  
pp. 1010-1018
Author(s):  
Xinggang Chen ◽  
Yafeng Wang ◽  
Zhen Chen ◽  
Lifang Zhang ◽  
Xiaoming Sang ◽  
...  

Phthalonitrile resin/exfoliated hexagonal boron nitride ( h-BN) composites with high thermal conductivity were fabricated using a novel approach. The route included two steps, micro- h-BN was coated and dispersed by phthalonitrile monomers via the function of heterogeneous nucleation, and then micro- h-BN was exfoliated by heat release during the phthalonitrile curing process. The composites achieved a high thermal conductivity of 0.736W (m·K)−1 containing 20 wt% micro- h-BN, which is 3.17 times higher than that of pure phthalonitrile resin at 0.232W (m·K)−1. Compared to traditional routes, the novel preparation approach requires less BN fillers when improving the same thermal conductivity. Importantly, other thermosetting polymers can also encapsulate BN through this strategy, which paves a new way for preparing thermally conductive thermosetting polymer–matrix composites.


RSC Advances ◽  
2018 ◽  
Vol 8 (45) ◽  
pp. 25835-25845 ◽  
Author(s):  
Cuiping Yu ◽  
Wenbin Gong ◽  
Jun Zhang ◽  
Weibang Lv ◽  
Wei Tian ◽  
...  

Orientational hBN/SEBS composite films embued with superior thermal conductivity and improved dimensional stability were prepared by hot-pressing treatment.


2016 ◽  
Vol 100 (2) ◽  
pp. 515-519 ◽  
Author(s):  
Ching-cheh Hung ◽  
Janet Hurst ◽  
Diana Santiago ◽  
Maricela Lizcano ◽  
Marisabel Kelly

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 938 ◽  
Author(s):  
Weijie Liang ◽  
Xin Ge ◽  
Jianfang Ge ◽  
Tiehu Li ◽  
Tingkai Zhao ◽  
...  

The thermally conductive properties of silicone thermal grease enhanced by hexagonal boron nitride (hBN) nanosheets as a filler are relevant to the field of lightweight polymer-based thermal interface materials. However, the enhancements are restricted by the amount of hBN nanosheets added, owing to a dramatic increase in the viscosity of silicone thermal grease. To this end, a rational structural design of the filler is needed to ensure the viable development of the composite material. Using reduced graphene oxide (RGO) as substrate, three-dimensional (3D) heterostructured reduced graphene oxide-hexagonal boron nitride (RGO-hBN)-stacking material was constructed by self-assembly of hBN nanosheets on the surface of RGO with the assistance of binder for silicone thermal grease. Compared with hBN nanosheets, 3D RGO-hBN more effectively improves the thermally conductive properties of silicone thermal grease, which is attributed to the introduction of graphene and its phonon-matching structural characteristics. RGO-hBN/silicone thermal grease with lower viscosity exhibits higher thermal conductivity, lower thermal resistance and better thermal management capability than those of hBN/silicone thermal grease at the same filler content. It is feasible to develop polymer-based thermal interface materials with good thermal transport performance for heat removal of modern electronics utilising graphene-supported hBN as the filler at low loading levels.


Sign in / Sign up

Export Citation Format

Share Document