Layer-by-layer self-assembled laminin/fucoidan films: towards better hemocompatibility and endothelialization

RSC Advances ◽  
2016 ◽  
Vol 6 (61) ◽  
pp. 56048-56055 ◽  
Author(s):  
Yan Wang ◽  
Changrong Ye ◽  
Hong Su ◽  
Juan Wang ◽  
Yanan Wang ◽  
...  

The laminin/fucoidan multilayer film is prepared on glass via layer-by-layer self-assembly technique and monitored the assembled process by QCM-D. This film can inhibit platelets adhesion and improve ECs and EPCs adhesion.

Author(s):  
Bo Zhang ◽  
Tony Zhengyu Cui

The manufacture and characterization of glucose biosensor based on layer by layer self assembled graphene are presented. Due to self assembly technique and flexible polymer substrate, the cost of the biosensor is very competitive. The resolution of the graphene based biosensor reaches down to 10 pM, which shows greater advantages over CNT based biosensor under the same conditions. The response time of graphene biosensor is less than 3 s, which is much faster than other materials and methods. This work demonstrates that graphene and polymers are very promising materials for the applications of low-cost glucose biosensors.


RSC Advances ◽  
2014 ◽  
Vol 4 (46) ◽  
pp. 24369-24376 ◽  
Author(s):  
Jiemin Zhao ◽  
Xiaoping Wang ◽  
Yanshen Kuang ◽  
Yufeng Zhang ◽  
Xiaowen Shi ◽  
...  

Alginate (ALG)–lysozyme (LZ) beads were fabricated by a cross-linking process. Negatively charged ALG and positively charged LZ were alternately deposited on the positively charged ALG–LZ beads via a layer-by-layer (LBL) self-assembly technique.


2016 ◽  
Vol 852 ◽  
pp. 1034-1038
Author(s):  
Li Nan Xu ◽  
Shu Chen Tu ◽  
Feng Zhu Lv ◽  
Qi An ◽  
Yi He Zhang

Polyethylene glycol (PEG), which was not a traditional building block of layer by layer (LBL) self-assembly, was used to fabricate multilayer films by the combination of LBL and magnetic field induction. The UV-abs absorbance of the composite films increases linearly with the number of bilayers, indicating uniform fabrication of each layer. By this method, the multilayers can consist of up to 15 bilayers. The applied magnetic field not only enhances the compactness of the CPC-Fe3O4-MMT, but also improves the deposition efficiency of the films. The present method can be an effective method for multilayer film fabrication from non polyelectrolyte.


2013 ◽  
Vol 10 (84) ◽  
pp. 20130070 ◽  
Author(s):  
Haiyong Ao ◽  
Youtao Xie ◽  
Honglue Tan ◽  
Shengbing Yang ◽  
Kai Li ◽  
...  

Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2998 ◽  
Author(s):  
Shanshan Li ◽  
Qingying Luo ◽  
Zhiqing Zhang ◽  
Guanghui Shen ◽  
Hejun Wu ◽  
...  

We investigated the permselectivity and interfacial electron transfers of an amphiphilic branch-tailed fluorosurfactant self-assembled monolayer (FS-SAM) on a gold electrode by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FS-SAM was prepared by a self-assembly technique and a “click” reaction. The barrier property and interfacial electron transfers of the FS-SAM were also evaluated using various probes with different features. The FS-SAM allowed a higher degree of permeation by small hydrophilic (Cl− and F−) electrolyte ions than large hydrophobic (ClO4− and PF6−) ones. Meanwhile, the redox reaction of the Fe(CN)63− couple was nearly completely blocked by the FS-SAM, whereas the electron transfer of Ru(NH3)63+ was easier than that of Fe(CN)63−, which may be due to the underlying tunneling mechanism. For hydrophobic dopamine, the hydrophobic bonding between the FS-SAM exterior fluoroalkyl moieties and the hydrophobic probes, as well as the hydration resistance from the interior hydration shell around the oligo (ethylene glycol) moieties, hindered the transport of hydrophobic probes into the FS-SAM. These results may have profound implications for understanding the permselectivity and electron transfers of amphiphilic surfaces consisting of molecules containing aromatic groups and branch-tailed fluorosurfactants in their structures.


2010 ◽  
Vol 65 (2) ◽  
pp. 140-146 ◽  
Author(s):  
Dan Chen ◽  
Jun Peng ◽  
Haijun Pang ◽  
Pengpeng Zhang ◽  
Yuan Chen ◽  
...  

Two kinds of multilayer films based on Keggin polyoxometalates α-[SiW12O40]4−/α- [PMo12O40]3− and methylene blue have been prepared via the layer-by-layer (LBL) self-assembly technique. The multilayer films were characterized by UV/Vis spectra, atomic force microscopy (AFM) and X-ray photoelectron spectra (XPS). The cyclic voltammetry (CV) measurements have demonstrated that the electrochemical properties of POMs are maintained in the LBL films. The antibacterial activity of the LBL films has also been investigated, which shows a distinct antibacterial effect against Escherichia coli.


2011 ◽  
Vol 675-677 ◽  
pp. 231-234 ◽  
Author(s):  
Wen Juan Zheng ◽  
Hai Tao Zheng ◽  
Tao Sun ◽  
Pu Liu ◽  
Shinichiro Suye

A redox polymer, poly(ethylenimine)ferrocene (PEI-Fc) was synthesized by attaching ferrocene groups to the backbone of water soluble poly(ethylenimine), and multilayer film in nanoscale was assembled on gold electrode by alternate layer-by-layer adsorption (LBL) of the positively charged PEI-Fc and the negatively charged thermostable diaphorase (DI) from B.Stearothermophilus. The LBL process was monitored and analyzed by quartz crystal microbalance (QCM) technique, which confirmed the formation of the multilayer structure. The electrochemical oxidation of coenzyme (reduced nicotinamide adenine dinucleotide, NADH) was observed on the electrode fabricated with PEI-Fc/DI multilayer film, and the influence of layer number on current response was investigated. The modified electrode retained ca. 65% relative response after storage in buffer for two months and 50% relative response after incubation at 80 °C for 3 min, which inferred that the multilayer structure was unique stable. A NAD-dependent glucose-6-phosphate dehydrogenase (G6PDH) was also immobilized via the same LBL technique, and electrode modified with PEI-Fc/DI/G6PDH film exhibited current response to glucose-6- phosphate in the presence of free NAD+.


Sign in / Sign up

Export Citation Format

Share Document