scholarly journals Experimental and computational evidence on conformational fluctuations as a source of catalytic defects in genetic diseases

RSC Advances ◽  
2016 ◽  
Vol 6 (63) ◽  
pp. 58604-58612 ◽  
Author(s):  
Julian E. Fuchs ◽  
Inés G. Muñoz ◽  
David J. Timson ◽  
Angel L. Pey

Catalytic mutants causing inherited type III galactosemia alter active site structural dynamics and shift the native conformational equilibrium towards inactive conformations.

2010 ◽  
Vol 114 (26) ◽  
pp. 8701-8712 ◽  
Author(s):  
Pavel Banáš ◽  
Nils G. Walter ◽  
Jiří Šponer ◽  
Michal Otyepka

2017 ◽  
Vol 199 (10) ◽  
Author(s):  
Swaminath Srinivas ◽  
John E. Cronan

ABSTRACT FabG performs the NADPH-dependent reduction of β-keto acyl-acyl carrier protein substrates in the elongation cycle of fatty acid synthesis. We report the characterization of a temperature-sensitive mutation (fabGΔ8) in Escherichia coli fabG that results from an in-frame 8-amino-acid residue deletion in the α6/α7 subdomain. This region forms part of one of the two dimerization interfaces of this tetrameric enzyme and is reported to undergo significant conformational changes upon cofactor binding, which define the entrance to the active-site cleft. The activity of the mutant enzyme is extremely thermolabile and is deficient in forming homodimers at nonpermissive temperatures with a corresponding decrease in fatty acid synthesis both in vivo and in vitro. Surprisingly, the fabGΔ8 strain reverts to temperature resistance at a rate reminiscent of that of a point mutant with intragenic pseudorevertants located either on the 2-fold axes of symmetry or at the mouth of the active-site cleft. The fabGΔ8 mutation also confers resistance to the calmodulin inhibitor trifluoperazine and renders the enzyme extremely sensitive to Ca2+ in vitro. We also observed a significant alteration in the lipid A fatty acid composition of fabGΔ8 strains but only in an lpxC background, probably due to alterations in the permeability of the outer membrane. These observations provide insights into the structural dynamics of FabG and hint at yet another point of regulation between fatty acid and lipid A biosynthesis. IMPORTANCE Membrane lipid homeostasis and its plasticity in a variety of environments are essential for bacterial survival. Since lipid biosynthesis in bacteria and plants is fundamentally distinct from that in animals, it is an ideal target for the development of antibacterial therapeutics. FabG, the subject of this study, catalyzes the first cofactor-dependent reduction in this pathway and is active only as a tetramer. This study examines the interactions responsible for tetramerization through the biochemical characterization of a novel temperature-sensitive mutation caused by a short deletion in an important helix-turn-helix motif. The mutant strain has altered phospholipid and lipid A compositions and is resistant to trifluoperazine, an inhibitor of mammalian calmodulin. Understanding its structural dynamics and its influence on lipid A synthesis also allows us to explore lipid homeostasis as a mechanism for antibiotic resistance.


2017 ◽  
Vol 73 (12) ◽  
pp. 1007-1019 ◽  
Author(s):  
Charles Stewart ◽  
Kate Woods ◽  
Greg Macias ◽  
Andrew C. Allan ◽  
Roger P. Hellens ◽  
...  

Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure–function relationships within the type III PKS family, the crystal structures of biphenyl synthase fromMalus×domesticaand benzophenone synthase fromHypericum androsaemumwere compared with the structure of an archetypal type III PKS: chalcone synthase fromMalus×domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants.


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Tristan Wagner ◽  
Carl-Eric Wegner ◽  
Jörg Kahnt ◽  
Ulrich Ermler ◽  
Seigo Shima

ABSTRACT The phylogenetically diverse family of methanogenic archaea universally use methyl coenzyme M reductase (MCR) for catalyzing the final methane-forming reaction step of the methanogenic energy metabolism. Some methanogens of the orders Methanobacteriales and Methanococcales contain two isoenzymes. Comprehensive phylogenetic analyses on the basis of all three subunits grouped MCRs from Methanobacteriales and Methanococcales into three distinct types: (i) MCRs from Methanobacteriales, (ii) MCRs from Methanobacteriales and Methanococcales, and (iii) MCRs from Methanococcales. The first and second types contain MCR isoenzymes I and II from Methanothermobacter marburgensis, respectively; therefore, they were designated MCR type I and type II and accordingly; the third one was designated MCR type III. For comparison with the known MCR type I and type II structures, we determined the structure of MCR type III from Methanotorris formicicus and Methanothermococcus thermolithotrophicus. As predicted, the three MCR types revealed highly similar overall structures and virtually identical active site architectures reflecting the chemically challenging mechanism of methane formation. Pronounced differences were found at the protein surface with respect to loop geometries and electrostatic properties, which also involve the entrance of the active-site funnel. In addition, the C-terminal end of the γ-subunit is prolonged by an extra helix after helix γ8 in MCR type II and type III, which is, however, differently arranged in the two MCR types. MCR types I, II, and III share most of the posttranslational modifications which appear to fine-tune the enzymatic catalysis. Interestingly, MCR type III lacks the methyl-cysteine but possesses in subunit α of M. formicicus a 6-hydroxy-tryptophan, which thus far has been found only in the α-amanitin toxin peptide but not in proteins. IMPORTANCE Methyl coenzyme M reductase (MCR) represents a prime target for the mitigation of methane releases. Phylogenetic analyses of MCRs suggested several distinct sequence clusters; those from Methanobacteriales and Methanococcales were subdivided into three types: MCR type I from Methanobacteriales, MCR type II from Methanobacteriales and Methanococcales, and the newly designated MCR type III exclusively from Methanococcales. We determined the first X-ray structures for an MCR type III. Detailed analyses revealed substantial differences between the three types only in the peripheral region. The subtle modifications identified and electrostatic profiles suggested enhanced substrate binding for MCR type III. In addition, MCR type III from Methanotorris formicicus contains 6-hydroxy-tryptophan, a new posttranslational modification that thus far has been found only in the α-amanitin toxin.


2003 ◽  
Vol 64 (6) ◽  
pp. 1045-1054 ◽  
Author(s):  
Christian Eckermann ◽  
Bernd Matthes ◽  
Manfred Nimtz ◽  
Verena Reiser ◽  
Barbara Lederer ◽  
...  

2004 ◽  
Vol 279 (22) ◽  
pp. 22944-22952 ◽  
Author(s):  
Karin Nienhaus ◽  
Jan M. Kriegl ◽  
G. Ulrich Nienhaus

1982 ◽  
Vol 79 (5) ◽  
pp. 1511-1514 ◽  
Author(s):  
M. R. Ondrias ◽  
D. L. Rousseau ◽  
S. R. Simon

2021 ◽  
Author(s):  
Wenlong Zhu ◽  
Stuart McQuarrie ◽  
Sabine Grüschow ◽  
Stephen A McMahon ◽  
Shirley Graham ◽  
...  

Abstract Cells and organisms have a wide range of mechanisms to defend against infection by viruses and other mobile genetic elements (MGE). Type III CRISPR systems detect foreign RNA and typically generate cyclic oligoadenylate (cOA) second messengers that bind to ancillary proteins with CARF (CRISPR associated Rossman fold) domains. This results in the activation of fused effector domains for antiviral defence. The best characterised CARF family effectors are the Csm6/Csx1 ribonucleases and DNA nickase Can1. Here we investigate a widely distributed CARF family effector with a nuclease domain, which we name Can2 (CRISPR ancillary nuclease 2). Can2 is activated by cyclic tetra-adenylate (cA4) and displays both DNase and RNase activity, providing effective immunity against plasmid transformation and bacteriophage infection in Escherichia coli. The structure of Can2 in complex with cA4 suggests a mechanism for the cA4-mediated activation of the enzyme, whereby an active site cleft is exposed on binding the activator. These findings extend our understanding of type III CRISPR cOA signalling and effector function.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Januka S Athukoralage ◽  
Stuart McQuarrie ◽  
Sabine Grüschow ◽  
Shirley Graham ◽  
Tracey M Gloster ◽  
...  

Type III CRISPR systems detect foreign RNA and activate the cyclase domain of the Cas10 subunit, generating cyclic oligoadenylate (cOA) molecules that act as a second messenger to signal infection, activating nucleases that degrade the nucleic acid of both invader and host. This can lead to dormancy or cell death; to avoid this, cells need a way to remove cOA from the cell once a viral infection has been defeated. Enzymes specialised for this task are known as ring nucleases, but are limited in their distribution. Here, we demonstrate that the widespread CRISPR associated protein Csx3, previously described as an RNA deadenylase, is a ring nuclease that rapidly degrades cyclic tetra-adenylate (cA4). The enzyme has an unusual cooperative reaction mechanism involving an active site that spans the interface between two dimers, sandwiching the cA4 substrate. We propose the name Crn3 (CRISPR associated ring nuclease 3) for the Csx3 family.


2019 ◽  
Author(s):  
Januka S. Athukoralage ◽  
Shirley Graham ◽  
Sabine Grüschow ◽  
Christophe Rouillon ◽  
Malcolm F. White

Cyclic oligoadenylate (cOA) secondary messengers are generated by type III CRISPR systems in response to viral infection. cOA allosterically activates the CRISPR ancillary ribonucleases Csx1/Csm6, which degrade RNA non-specifically using a HEPN (Higher Eukaryotes and Prokaryotes, Nucleotide binding) active site. This provides effective immunity, but can also lead to growth arrest in infected cells, necessitating a means to deactivate the ribonuclease once viral infection has been cleared. In the crenarchaea, dedicated ring nucleases degrade cA4(cOA consisting of 4 AMP units), but the equivalent enzyme has not been identified in bacteria. We demonstrate that, inThermus thermophilusHB8, the uncharacterised protein TTHB144 is a cA4-activated HEPN ribonuclease that also degrades its activator. TTHB144 binds and degrades cA4at an N-terminal CARF (CRISPR Associated Rossman Fold) domain. The two activities can be separated by site-directed mutagenesis. TTHB144 is thus the first example of a self-limiting CRISPR ribonuclease.Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document