cyclase domain
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jone Amuategi ◽  
Rocio Alonso ◽  
Helena Ostolaza

Adenylate Cyclase Toxin (ACT or CyaA) is an important virulence factor secreted by Bordetella pertussis, the bacterium causative of whooping cough, playing an essential role in the establishment of infection in the respiratory tract. ACT is a pore-forming cytolysin belonging to the RTX (Repeats in ToXin) family of leukotoxins, capable of permeabilizing several cell types and pure lipid vesicles. Besides, the toxin delivers its N-terminal adenylate cyclase domain into the target cytosol, where catalyzes the conversion of ATP into cAMP, which affects cell signalling. In this study we have made two major observations. First, we show that ACT binds free cholesterol, and identify in its sequence 38 potential cholesterol-recognition motifs. Second, we reveal that four of those motifs are real, functional cholesterol-binding sites. Mutations of the central phenylalanine residues in said motifs have an important impact on the ACT lytic and translocation activities, suggesting their direct intervention in cholesterol recognition and toxin functionality. From our data a likely transmembrane topology can be inferred for the ACT helices constituting the translocation and the hydrophobic regions. From this topology a simple and plausible mechanism emerges by which ACT could translocate its AC domain into target cells, challenging previous views in the field. Blocking the ACT-cholesterol interactions might thus be an effective approach for inhibiting ACT toxicity on cells, and this could help in mitigating the severity of pertussis disease in humans.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jacque L. Faylo ◽  
Trevor van Eeuwen ◽  
Hee Jong Kim ◽  
Jose J. Gorbea Colón ◽  
Benjamin A. Garcia ◽  
...  

AbstractFusicoccadiene synthase from Phomopsis amygdali (PaFS) is a unique bifunctional terpenoid synthase that catalyzes the first two steps in the biosynthesis of the diterpene glycoside Fusicoccin A, a mediator of 14-3-3 protein interactions. The prenyltransferase domain of PaFS generates geranylgeranyl diphosphate, which the cyclase domain then utilizes to generate fusicoccadiene, the tricyclic hydrocarbon skeleton of Fusicoccin A. Here, we use cryo-electron microscopy to show that the structure of full-length PaFS consists of a central octameric core of prenyltransferase domains, with the eight cyclase domains radiating outward via flexible linker segments in variable splayed-out positions. Cryo-electron microscopy and chemical crosslinking experiments additionally show that compact conformations can be achieved in which cyclase domains are more closely associated with the prenyltransferase core. This structural analysis provides a framework for understanding substrate channeling, since most of the geranylgeranyl diphosphate generated by the prenyltransferase domains remains on the enzyme for cyclization to form fusicoccadiene.


2021 ◽  
pp. 103850
Author(s):  
Veronika Smith ◽  
Ida Kristine Bu Nilssen ◽  
Ida K. Hegna ◽  
Bjørn Dalhus ◽  
Annette Fagerlund ◽  
...  

2021 ◽  
Author(s):  
Bandana Kumari ◽  
Jashandeep Kaur ◽  
Pratibha Maan ◽  
Arbind Kumar ◽  
Jagdeep Kaur

Aim: The confirmation of lipolytic activity and role of Rv1900c in the mycobacterium physiology Methods: rv1900c/N-terminus domain ( rv1900NT) were cloned in pET28a/ Escherichia coli, purified by affinity chromatography and characterized. Results: A zone of clearance on tributyrin-agar and activity with pNP-decanoate confirmed the lipolytic activity of Rv1900c. The Rv1900NT demonstrated higher enzyme specific activity, Vmax and kcat, but Rv1900c was more thermostable. The lipolytic activity of Rv1900c decreased in presence of ATP. Mycobacterium smegmatis expressing rv1900c/ rv1900NT altered colony morphology, growth, cell surface properties and survival under stress conditions. The effect was more prominent with Rv1900NT as compared with Rv1900c. Conclusion: The study confirmed the lipolytic activity of Rv1900c and suggested its regulation by the adenylate cyclase domain and role in intracellular survival of bacteria.


2021 ◽  
Vol 22 (8) ◽  
pp. 4069
Author(s):  
Xiaoyang Chen ◽  
Zhangxin Pei ◽  
Pingping Li ◽  
Xiabing Li ◽  
Yuhang Duan ◽  
...  

Rice false smut is a fungal disease distributed worldwide and caused by Ustilaginoidea virens. In this study, we identified a putative ester cyclase (named as UvEC1) as being significantly upregulated during U. virens infection. UvEC1 contained a SnoaL-like polyketide cyclase domain, but the functions of ketone cyclases such as SnoaL in plant fungal pathogens remain unclear. Deletion of UvEC1 caused defects in vegetative growth and conidiation. UvEC1 was also required for response to hyperosmotic and oxidative stresses and for maintenance of cell wall integrity. Importantly, ΔUvEC1 mutants exhibited reduced virulence. We performed a tandem mass tag (TMT)-based quantitative proteomic analysis to identify differentially accumulating proteins (DAPs) between the ΔUvEC1-1 mutant and the wild-type isolate HWD-2. Proteomics data revealed that UvEC1 has a variety of effects on metabolism, protein localization, catalytic activity, binding, toxin biosynthesis and the spliceosome. Taken together, our findings suggest that UvEC1 is critical for the development and virulence of U. virens.


2020 ◽  
Vol 295 (44) ◽  
pp. 14963-14972
Author(s):  
Sharidan Brown ◽  
Colin C. Gauvin ◽  
Alexander A. Charbonneau ◽  
Nathaniel Burman ◽  
C. Martin Lawrence

Cas10 is the signature gene for type III CRISPR–Cas surveillance complexes. Unlike type I and type II systems, type III systems do not require a protospacer adjacent motif and target nascent RNA associated with transcriptionally active DNA. Further, target RNA recognition activates the cyclase domain of Cas10, resulting in the synthesis of cyclic oligoadenylate second messengers. These second messengers are recognized by ancillary Cas proteins harboring CRISPR-associated Rossmann fold (CARF) domains and regulate the activities of these proteins in response to invading nucleic acid. Csx3 is a distant member of the CARF domain superfamily previously characterized as a Mn2+-dependent deadenylation exoribonuclease. However, its specific role in CRISPR–Cas defense remains to be determined. Here we show that Csx3 is strongly associated with type III systems and that Csx3 binds cyclic tetra-adenylate (cA4) second messenger with high affinity. Further, Csx3 harbors cyclic oligonucleotide phosphodiesterase activity that quickly degrades this cA4 signal. In addition, structural analysis identifies core elements that define the CARF domain fold, and the mechanistic basis for ring nuclease activity is discussed. Overall, the work suggests that Csx3 functions within CRISPR–Cas as a counterbalance to Cas10 to regulate the duration and amplitude of the cA4 signal, providing an off ramp from the programmed cell death pathway in cells that successfully cure viral infection.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Januka S Athukoralage ◽  
Stuart McQuarrie ◽  
Sabine Grüschow ◽  
Shirley Graham ◽  
Tracey M Gloster ◽  
...  

Type III CRISPR systems detect foreign RNA and activate the cyclase domain of the Cas10 subunit, generating cyclic oligoadenylate (cOA) molecules that act as a second messenger to signal infection, activating nucleases that degrade the nucleic acid of both invader and host. This can lead to dormancy or cell death; to avoid this, cells need a way to remove cOA from the cell once a viral infection has been defeated. Enzymes specialised for this task are known as ring nucleases, but are limited in their distribution. Here, we demonstrate that the widespread CRISPR associated protein Csx3, previously described as an RNA deadenylase, is a ring nuclease that rapidly degrades cyclic tetra-adenylate (cA4). The enzyme has an unusual cooperative reaction mechanism involving an active site that spans the interface between two dimers, sandwiching the cA4 substrate. We propose the name Crn3 (CRISPR associated ring nuclease 3) for the Csx3 family.


2020 ◽  
Author(s):  
Januka S. Athukoralage ◽  
Stuart McQuarrie ◽  
Sabine Grüschow ◽  
Shirley Graham ◽  
Tracey M. Gloster ◽  
...  

AbstractType III CRISPR systems detect foreign RNA and activate the cyclase domain of the Cas10 subunit, generating cyclic oligoadenylate (cOA) molecules that act as a second messenger to signal infection, activating nucleases that degrade the nucleic acid of both invader and host. This can lead to dormancy or cell death; to avoid this, cells need a way to remove cOA from the cell once a viral infection has been defeated. Enzymes specialised for this task are known as ring nucleases, but are limited in their distribution. Here, we demonstrate that the widespread CRISPR associated protein Csx3, previously described as an RNA deadenylase, is a ring nuclease that rapidly degrades cyclic tetra-adenylate (cA4). The enzyme has an unusual cooperative reaction mechanism involving an active site that spans the interface between two dimers, sandwiching the cA4 substrate. We propose the name Crn3 (CRISPR associated ring nuclease 3) for the Csx3 family.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Johnnie A. Walker ◽  
Yuqi Wu ◽  
Jacob R. Potter ◽  
Emily E. Weinert

Abstract The ability of organisms to sense and adapt to oxygen levels in their environment leads to changes in cellular phenotypes, including biofilm formation and virulence. Globin coupled sensors (GCSs) are a family of heme proteins that regulate diverse functions in response to O2 levels, including modulating synthesis of cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates biofilm formation. While GCS proteins have been demonstrated to regulate O2-dependent pathways, the mechanism by which the O2 binding event is transmitted from the globin domain to the cyclase domain is unknown. Using chemical cross-linking and subsequent liquid chromatography-tandem mass spectrometry, diguanylate cyclase (DGC)-containing GCS proteins from Bordetella pertussis (BpeGReg) and Pectobacterium carotovorum (PccGCS) have been demonstrated to form direct interactions between the globin domain and a middle domain π-helix. Additionally, mutation of the π-helix caused major changes in oligomerization and loss of DGC activity. Furthermore, results from assays with isolated globin and DGC domains found that DGC activity is affected by the cognate globin domain, indicating unique interactions between output domain and cognate globin sensor. Based on these studies a compact GCS structure, which depends on the middle domain π-helix for orienting the three domains, is needed for DGC activity and allows for direct sensor domain interactions with both middle and output domains to transmit the O2 binding signal. The insights from the present study improve our understanding of DGC regulation and provide insight into GCS signaling that may lead to the ability to rationally control O2-dependent GCS activity.


Sign in / Sign up

Export Citation Format

Share Document