Green synthesis of silver nanoparticles with high antimicrobial activity and low cytotoxicity using catechol-conjugated chitosan

RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 64357-64363 ◽  
Author(s):  
Xiaofei Huang ◽  
Yichuan Pang ◽  
Yalan Liu ◽  
Yi Zhou ◽  
Zhengke Wang ◽  
...  

Catechol-conjugated chitosan was synthesized to act as a reducing and stabilizing agent in the preparation of silver nanoparticles. The resulting silver nanoparticles exhibit strong antibacterial activity and low cytotoxicity.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Diana Garibo ◽  
Hugo A. Borbón-Nuñez ◽  
Jorge N. Díaz de León ◽  
Ernesto García Mendoza ◽  
Iván Estrada ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (30) ◽  
pp. 17002-17015 ◽  
Author(s):  
Kishore Chand ◽  
M. Ishaque Abro ◽  
Umair Aftab ◽  
Ahmer Hussain Shah ◽  
Muhammad Nazim Lakhan ◽  
...  

The silver nanoparticles were synthesized from the neem leaves, onions, and tomato extracts, and the antibacterial activity of the particles was studied.


2015 ◽  
Vol 1086 ◽  
pp. 7-10 ◽  
Author(s):  
S. Deena ◽  
Arun Dakshinamurthy ◽  
Paulraj Mosae Selvakumar

Green synthesis of silver nanoparticles using banana sap as a solvent, reducing agent and capping agent is reported in this work. Banana sap has also been used as a binder to incorporate silver nanoparticles into cotton fabric. UV-Visible spectroscopy was used to monitor the quantitative formation of silver nanoparticles. Silver nanoparticle coated fabric showed high antimicrobial activity against gram negative bacteria such asPseudomonas aureginosaandEscherichia coli, and gram positive bacteria such asBacillus subtilisandStaphylococcus aureus.KeywordsGreen synthesis, Silver nanoparticles, banana sap, antimicrobial activity


RSC Advances ◽  
2020 ◽  
Vol 10 (35) ◽  
pp. 20676-20681
Author(s):  
Renata Pascoal Illanes Tormena ◽  
Eliane Vieira Rosa ◽  
Bruna de Fátima Oliveira Mota ◽  
Juliano Alexandre Chaker ◽  
Christopher William Fagg ◽  
...  

Silver nanoparticles with low toxicity and improved antibacterial activity are obtained by a green route using microwave-assisted synthesis with plant extract.


2018 ◽  
Vol 199 ◽  
pp. 641-648 ◽  
Author(s):  
Jitrada Wongpreecha ◽  
Duangporn Polpanich ◽  
Teeraporn Suteewong ◽  
Chariya Kaewsaneha ◽  
Pramuan Tangboriboonrat

2019 ◽  
Vol 4 (2) ◽  
pp. 112-124
Author(s):  
Edward K.B. Bragais ◽  
Lynne M. Labaclado

Background and Objective: In this study, dudoa (Hydnocarpus alcalae C.DC.) leaf extract was used as a reducing and stabilizing agent in a novel one-step green synthesis of silver nanoparticles. Dudoa is an endemic plant in the province of Legazpi, Philippines and its seed oil was used as an anti-leprotic drug. Method: Therefore, the dudoa leaf extract was used to synthesize silver nanoparticles. Moreover, optimization of various parameters greatly affected the size and morphology of the synthesized AgNPs as indicated by the Ultraviolet-visible (UV-vis) spectrophotometry. The synthesized AgNPs were further characterized using spectral analyses such as XRD, EDX, SEM, FT-IR, TGA and DLS. The antimicrobial activity of synthesized AgNPs was also demonstrated. Results and Discussions: The synthesized AgNPs exhibited a diffraction pattern and a particle size ranging from 22-48 nm. The AgNPs also showed complete inhibitory and mild reactivity against representative pathogenic gram-positive (S.aureus) and gram-negative (E.coli) bacteria. Conclusion: Silver nanoparticles were successfully synthesized using H. alcalae leaf extract. Furthermore, this green synthesis approach appeared to be cost-effective, non-toxic, and eco-friendly which is a best alternative to the conventional chemical methods.


Sign in / Sign up

Export Citation Format

Share Document