Green Synthesis of Silver Nanoparticle Using Banana (Musa) Sap

2015 ◽  
Vol 1086 ◽  
pp. 7-10 ◽  
Author(s):  
S. Deena ◽  
Arun Dakshinamurthy ◽  
Paulraj Mosae Selvakumar

Green synthesis of silver nanoparticles using banana sap as a solvent, reducing agent and capping agent is reported in this work. Banana sap has also been used as a binder to incorporate silver nanoparticles into cotton fabric. UV-Visible spectroscopy was used to monitor the quantitative formation of silver nanoparticles. Silver nanoparticle coated fabric showed high antimicrobial activity against gram negative bacteria such asPseudomonas aureginosaandEscherichia coli, and gram positive bacteria such asBacillus subtilisandStaphylococcus aureus.KeywordsGreen synthesis, Silver nanoparticles, banana sap, antimicrobial activity

2021 ◽  
Vol 12 (4) ◽  
pp. 2383-2388
Author(s):  
Suguna Selvakumaran ◽  
Kayathri Marimuthu ◽  
Thiruvany Poopalan ◽  
Kalaiyarasi Tamil Selvan ◽  
Nozieana Khairuddin

Silver nanoparticles have attracted high attention worldwide for their various applications. The physiochemical parameters such as temperature, media, mixing ratio affect the rate of synthesis of silver nanoparticles and their yield. Thus, optimization of these physiochemical parameters is needed to enhance the production of silver nanoparticles. In this study, silver nanoparticles were synthesized using Aspergillus niger culture supernatant. The produced silver nanoparticles were characterized using UV-visible Spectrophotometer at 200 nm to 700 nm, which had a peak at 450 nm, indicates the formation of silver nanoparticles. It was found that Sabouraud Dextrose Broth (SDB) as optimum media, 40 ml of supernatant and 10 ml of silver nitrate as optimum mixing ratio and 65°C as optimum temperature to produce silver nanoparticles. The optimized silver nanoparticles were subjected to antimicrobial activity, and it was found that it is highly effective towards gram-negative bacteria than gram-positive bacteria where the zone of inhibition for Escherichia coli was  7 ± 2.7 mm and 5.3 ± 2.1 mm for Staphylococcus aureus.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Marcos Díaz ◽  
Flora Barba ◽  
Miriam Miranda ◽  
Francisco Guitián ◽  
Ramón Torrecillas ◽  
...  

A silver-hydroxyapatite nanocomposite has been obtained by a colloidal chemical route and subsequent reduction process in H2/Ar atmosphere at350∘C. This material has been characterized by TEM, XRD, and UV-Visible spectroscopy, showing the silver nanoparticles (∼65 nm) supported onto the HA particles (∼130 nm) surface without a high degree of agglomeration. The bactericidal effect against common Gram-positive and Gram-negative bacteria has been also investigated. The results indicated a high antimicrobial activity forStaphylococcus aureus, PneumococcusandEscherichia coli,so this material can be a promising antimicrobial biomaterial for implant and reconstructive surgery applications.


Author(s):  
Md. Abdullah Al Masud ◽  
Hamid Shaikh ◽  
Md. Shamsul Alam ◽  
M. Minnatul Karim ◽  
M. Abdul Momin ◽  
...  

Abstract Background The green synthesis strategy of metallic nanoparticles (NPs) has become popular due to being environmentally friendly. Stable silver nanoparticles (AgNPs) have been synthesized by natural products such as starch, soy protein, various extract of leaves, barks, and roots functioning both as reducing and stabilizing agents. Likewise, silk sericin (SS) is a globular protein discarded in the silk factory might be used for NP synthesis. In this research, we focus on the green synthesis and stabilization of AgNPs by SS as well as assessment of their antibacterial activities against some drug-resistant pathogen. Results SS was extracted from Bombyx mori silkworm cocoons in an aqueous medium. 17 w/w% of dry sericin powder with respect to the cocoon’s weight was obtained by freeze-drying. Furthermore, AgNPs conjugated to sericin, i.e., SS-capped silver nanoparticles (SS-AgNPs) were synthesized by easy, cost-effective, and environment-friendly methods. The synthesized SS-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction measurement. It has been found from the absorbance of UV-visible spectroscopy that a higher percent of SS-AgNPs was obtained at a higher concentration of silver nitrate solution. FTIR-ATR spectra showed that the carboxylate groups obtained from silk sericin act as a reducing agent for the synthesis of silver nanoparticles, while NH2+ and COO− act as a stabilizer of AgNPs. The X-ray diffractogram of SS-AgNPs was quite different from AgNO3 and sericin due to a change in the crystal structure. The diameter of AgNPs was around 20–70 nm observed using TEM. The synthesized SS-AgNPs exhibited strong antibacterial activity against multidrug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 20μg/mL. Conclusions This study encourages the use of Bombyx mori for the ecofriendly synthesis of SS-AgNPs to control multidrug-resistant microorganisms.


Author(s):  
Shaileshkumar C Kotval ◽  
Kokila A Parmar

In this study, Mitragyna parvifolia plant bark an aqueous extract which provides cost-effective, eco-friendly process, less time consuming, an environmentally benign, easy and proficient way for the synthesis of copper nanoparticles. Mitragyna parvifolia plant bark was collected from virpur hills forest area. The Mitragyna parvifolia plant bark extract was prepared in de-ionised water and used for the green synthesis of copper nanoparticles. The color change of the solution dark brown from pale yellow colored, this confirms that there is a formation of copper nanoparticles. The green synthesised copper nanoparticles were characterized by UV-Visible spectroscopy, FT-IR, XRD, SEM, TEM and their antimicrobial activity was investigated. From UV-Visible spectrophotometer result was confirmed the reduction of copper sulphate to copper nanoparticles. FTIR analysis was confirmed the bending vibrations and stretching bonds present in the sample. Spherical shape was finding out by XRD and the size of the particle was analyzed with the help of Scanning Electron Microscopy. The antibacterial activity experiment against Escherichia coli gram-negative and Bacillus subtilis gram-positive bacteria by agar well method and the maximum zone of inhibition was higher in gram-positive bacteria compared to gram-negative bacteria. The green synthesised copper nanoparticles proved to be potential candidates for medical application antimicrobial activity is highly essential.


Author(s):  
Maphibanri Maring ◽  
Akila Elias ◽  
V. B. Narayanaswamy

<p>Nanotechnology is a field that is rapidly growing, making an impact in all spheres of human life. In the current study, silver nanoparticles were synthesized using the ethanolic leaf extract of <em>Achras sapota. </em>Characterization was carried out using UV-Visible spectroscopy, FTIR, XRD, SEM and TEM. The formation of AgNPs was confirmed through UV-Visible spectroscopy by the colour change. Based on the XRD pattern, the crystalline property of the AgNPs was established. The functional group present in the ethanolic leaf extract of <em>Achras sapota</em> is responsible for the reduction of the Ag<sup>+</sup> ion which was studied through FTIR. From the SEM and TEM analysis, it was found that the formed nanoparticles are spherical in shape and nano in size. The biosynthesized AgNPs was evaluated for its antimicrobial activity against gram positive bacteria (<em>S. aureus and L. bacillus</em>) and gram negative bacteria (<em>E. coli and P. aeruginosa</em>) using disc diffusion for preliminary screening of antimicrobial activity and dilution method for evaluation of antibacterial effectiveness and effect of silver nanoparticles on bacterial growth and it was found to exhibit potential antimicrobial activity. The biosynthesized AgNPs was found to be efficient in terms of reaction time as well as stability, eco-friendly and cost effective.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Toga Khalid Mohamed ◽  
Marivt Osman Widdatallah ◽  
Maida Musa Ali ◽  
Afraa Mubarak Alhaj ◽  
DhiaEldin AbdElmagied Elhag

An extremely worrying and alarming increase in the level of multiple drug resistance is reported in Sudan, in which bacterial strains are becoming resistant to many commonly available antibiotics. Eventually, it is becoming extremely difficult to treat debilitating infections. In search of promising solutions to this arising crisis, Camellia sinensis silver nanoparticles were synthesized using the green synthesis method. The synthesis of the Camellia sinensis silver nanoparticles is confirmed using analytical methods as ultraviolet-visible spectroscopy, X-ray diffractometer, and scanning electron microscopy. Using the ultraviolet-visible spectroscopy, an absorption band of 412 nm was observed. Furthermore, scanning electron microscopy revealed the presence of silver nanoparticles which fell within the range of 1–100 nm, and X-ray diffractometer analysis showed three intense peaks with a maximum intense peak at 24.3 theta. Nanoparticles distribution between 12 nm and 64 nm was observed with an average diameter of 18.115 nm. It also revealed orthorhombic-shaped nanoparticles. The synthesized nanoparticles showed antimicrobial activity against Staphylococcus aureus with a zone of inhibition of 7 mm, but none was detected against Escherichia coli. The obtained physicochemical properties were correlated with the antibacterial activity of the silver nanoparticles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hien Thi Hoang ◽  
Vinh Van Tran ◽  
Vu Khac Hoang Bui ◽  
Oh-Hyeok Kwon ◽  
Ju-Young Moon ◽  
...  

AbstractThe high antimicrobial ability and low toxicity of zinc-aminoclay (ZnAC) are claimed in our previous reports. In this study, we formulate a novel hand gel based on ZnAC and Opuntia humifusa (O. humifusa) extract, which is a high moisturizing agent. The antimicrobial activity, cytotoxicity, moisturizing effect, and clinical skin irritation of the hand gel are evaluated. The hand gel with 0.5 wt.% ZnAC and 1.0 v/v% O. humifusa extract can kill more than 99% Escherichia coli (gram-negative bacteria) and Staphylococcus aureus (gram-positive bacteria) after 24 h. Toxicity evaluation shows that, the hand gel does not affect the viability of mammalian HaCaT cells. Additionally, skin moisture is increased by applying the hand gel while its viscosity is at the standard level of commercial products. The hand gel has a skin irritation index of 0.0 and is classified as a non-irritating product. We successfully formulated hand gel from ZnAC, glucomannan, glycerol, and O. humifusa extract. Owing to the high antimicrobial activity and skin protection of hand gels, they are suitable to be used as hand sanitizers in restaurants, hospitals, and homes effectively.


2008 ◽  
Vol 3 (7) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Arif M Muhammed ◽  
Raj M Subbu ◽  
Leopold Jirovetz ◽  
Shafi P Mohamed

The essential oil of the berries of Litsea laevigata Nees., growing wild in Western Ghats, Kerala, India, was obtained by hydrodistillation and was fractionated by passage through a column using n-pentane and diethyl ether as eluents. The essential oil and its fractions were analysed by GC and GC-MS. Twenty seven compounds representing 99.2% of the original oil were identified. The major components are the terpene hydrocarbons trans-α-bergamotene(26.7%), α-pinene (25%) and β-pinene (8.2%). The antimicrobial activity of the essential oil and its fractions against four Gram-positive and four Gram-negative bacteria ( Staphylococcus aureus, Bacillus subtilis, Streptococcus faecalis, Staphylococcus albus, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella aerogenes), as well as two fungi ( Candida albicans, Aspergillus niger) was studied. The bioassay showed that the oil exhibited moderate to high antimicrobial activity, being very active against gram-positive bacteria, such as Streptococcus albus, and the fungus Aspergillus niger.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Diana Garibo ◽  
Hugo A. Borbón-Nuñez ◽  
Jorge N. Díaz de León ◽  
Ernesto García Mendoza ◽  
Iván Estrada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document