Development of demineralized bone matrix-based implantable and biomimetic microcarrier for stem cell expansion and single-step tissue-engineered bone graft construction

2017 ◽  
Vol 5 (1) ◽  
pp. 62-73 ◽  
Author(s):  
Zhenxing Wang ◽  
Dingyu Wu ◽  
Jiwei Zou ◽  
Quan Zhou ◽  
Wei Liu ◽  
...  

Tissue engineered bone grafts (TEBG) using mesenchymal stem cells (MSCs) demonstrate great potential for bone defect treatment.

2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Thakoon Thitiset ◽  
Siriporn Damrongsakkul ◽  
Supansa Yodmuang ◽  
Wilairat Leeanansaksiri ◽  
Jirun Apinun ◽  
...  

Abstract Background A novel biodegradable scaffold including gelatin (G), chitooligosaccharide (COS), and demineralized bone matrix (DBM) could play a significant part in bone tissue engineering. The present study aimed to investigate the biological characteristics of composite scaffolds in combination of G, COS, and DBM for in vitro cell culture and in vivo animal bioassays. Methods Three-dimensional scaffolds from the mixture of G, COS, and DBM were fabricated into 3 groups, namely, G, GC, and GCD using a lyophilization technique. The scaffolds were cultured with mesenchymal stem cells (MSCs) for 4 weeks to determine biological responses such as cell attachment and cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, cell morphology, and cell surface elemental composition. For the in vivo bioassay, G, GC, and GCD, acellular scaffolds were implanted subcutaneously in 8-week-old male Wistar rats for 4 weeks and 8 weeks. The explants were assessed for new bone formation using hematoxylin and eosin (H&E) staining and von Kossa staining. Results The MSCs could attach and proliferate on all three groups of scaffolds. Interestingly, the ALP activity of MSCs reached the greatest value on day 7 after cultured on the scaffolds, whereas the calcium assay displayed the highest level of calcium in MSCs on day 28. Furthermore, weight percentages of calcium and phosphorus on the surface of MSCs after cultivation on the GCD scaffolds increased when compared to those on other scaffolds. The scanning electron microscopy images showed that MSCs attached and proliferated on the scaffold surface thoroughly over the cultivation time. Mineral crystal aggregation was evident in GC and greatly in GCD scaffolds. H&E staining illustrated that G, GC, and GCD scaffolds displayed osteoid after 4 weeks of implantation and von Kossa staining confirmed the mineralization at 8 weeks in G, GC, and GCD scaffolds. Conclusion The MSCs cultured in GCD scaffolds revealed greater osteogenic differentiation than those cultured in G and GC scaffolds. Additionally, the G, GC, and GCD scaffolds could promote in vivo ectopic bone formation in rat model. The GCD scaffolds exhibited maximum osteoinductive capability compared with others and may be potentially used for bone regeneration.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1360 ◽  
Author(s):  
Monica Mattioli-Belmonte ◽  
Francesca Montemurro ◽  
Caterina Licini ◽  
Iolanda Iezzi ◽  
Manuela Dicarlo ◽  
...  

Decellularized bone matrix is receiving much attention as biological scaffolds and implantable biomaterials for bone tissue regeneration. Here, we evaluated the efficacy of a cell-free demineralized bone matrix on mesenchymal stem cells (MSCs) survival and differentiation in vitro. The seeding of human umbilical cord-derived MSCs (hUC-SCs) on decellularized bone matrices up to 14 days was exploited, assessing their capability of scaffold colonization and evaluating gene expression of bone markers. Light and Scanning Electron Microscopies were used. The obtained cell-free decalcified structures showed elastic moduli attributable to both topology and biochemical composition. Morphological observation evidenced an almost complete colonization of the scaffolds after 14 days of culture. Moreover, in hUC-SCs cultured on decalcified scaffolds, without the addition of any osteoinductive media, there was an upregulation of Collagen Type I (COL1) and osteonectin (ON) gene expression, especially on day 14. Modifications in the expression of genes engaged in stemness were also detected. In conclusion, the proposed decellularized bone matrix can induce the in vitro hUC-SCs differentiation and has the potential to be tested for in in vivo tissue regeneration.


2021 ◽  
Author(s):  
Pankaj Mogha ◽  
Shruti Iyer ◽  
Abhijit Majumder

Extracellular matrices (ECM) present in our tissues play a significant role in maintaining tissue homeostasis through various physical and chemical cues such as topology, stiffness, and secretion of biochemicals. They are known to influence the behaviour of resident stem cells. It is also known that ECM type and coating density on cell culture plates strongly influence in vitro cellular behaviour. However, the influence of ECM protein coating on long term mesenchymal stem cell expansion has not been studied yet. To address this gap, we cultured bone-marrow derived hMSCs for multiple passages on the tissue culture plastic plates coated with 25 μg/ml of various ECM proteins. We found that cells on plates coated with ECM proteins had much higher proliferation compared to the regular tissue culture plates. Further, gelatin coated plates helped the cells to grow faster compared to collagen, fibronectin, and laminin coated plates. Additionally, the use of Gelatin showed less size heterogeneity among the cells when expanded from passages P3 to P9. Gelatin also helped in maintaining cellular stiffness which was not observed across other ECM proteins. In summary, in this research, we have shown that gelatin which is the least expensive compared to other ECM proteins provides a better platform for mesenchymal stem cell expansion.


Sign in / Sign up

Export Citation Format

Share Document