Analysis of deferiprone in exhaled breath condensate using silver nanoparticle-enhanced terbium fluorescence

2017 ◽  
Vol 9 (38) ◽  
pp. 5640-5645 ◽  
Author(s):  
Esmail Mohamadian ◽  
Ali Shayanfar ◽  
Maryam Khoubnasabjafari ◽  
Vahid Jouyban-Gharamaleki ◽  
Saba Ghaffary ◽  
...  

Exhaled breath condensate (EBC) has been proposed as an alternative non-invasive biological sample for therapeutic drug monitoring.

2015 ◽  
Vol 7 (2) ◽  
pp. 423-427
Author(s):  
A. Yamamoto ◽  
S. Hioki ◽  
C. Tanada ◽  
T. Miwa ◽  
Y. Inoue ◽  
...  

The possibility of using exhaled breath as a substitute for blood/plasma in areas of therapeutic drug monitoring was investigated.


2021 ◽  
Author(s):  
Can Dincer ◽  
Hatice Ceren Ates ◽  
Hasti Mohsenin ◽  
Christin Wenzel ◽  
Regina Glatz ◽  
...  

Abstract Antimicrobial resistance is increasing with an alarming rate for which the prime suspect is the “one size-fits-all” dosage strategies of antibiotics. Personalized antibiotherapy framework appears as a viable option to counteract inadequate dosage, as it offers the application of the optimal dosage regimen for each individual. Such individualized scheme, however, needs frequent sampling to tailor the blood antibiotic concentration to respond unique pharmacokinetic/pharmacodynamic (PK/PD) of the patient. Herein, there are two alternative paths for feasible therapeutic drug monitoring (TDM); transforming our understanding to utilize blood based sampling within the scope of point-of-care (POC), or focusing on non-invasive samples. Here, we present a versatile biosensor along with an antibody-free assay that can be utilized in both paths for on-site TDM. The developed platform is evaluated in a large animal study (pigs exposed with overdose, normal dose, and underdose of ß lactams), in which antibiotic concentrations are quantified in matrices including whole blood, plasma, urine, saliva, and exhaled breath condensate (EBC). Herein, the detection and the clearance of drug concentrations in EBC is demonstrated for the first time. Influence of the secretion mechanisms on measured drug concentrations is then quantified by comparing the plasma concentrations with those in EBC, saliva and urine. The potential of the developed platform for blood-based POC application is further illustrated by tracking ß lactam concentrations in untreated blood samples. Finally, multiplexing capabilities are explored successfully for multianalyte/sample analysis. Enabling a rapid, low-cost, sample-independent, and multiplexed on-site TDM, this system could pave the way for the personalized drug therapies and thus, shift the paradigm of “one size-fits-all” strategies.


2021 ◽  
Vol 40 (4) ◽  
pp. S63
Author(s):  
E. Ibáñez-Martínez ◽  
M. López-Nogueroles ◽  
M. Alcoriza-Balaguer ◽  
I. Pérez ◽  
M. Roca-Marugán ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
A. Shoemark ◽  
R. Wilson

Bronchiectasis is characterised by neutrophilic bronchial inflammation. Direct measurement of lung inflammation would be useful to assess disease activity, guide need for treatment, and monitor response. The aim of this study was to test whether exhaled breath condensate (EBC) pH, a simple noninvasive test, provides a clinically useful measure of inflammation in the lungs of patients with bronchiectasis. 96 consecutively referred patients were studied when clinically stable, 20 followed up over two years, and a further 22 patients seen during an exacerbation. Subjects breathed tidally for 10 minutes into a condensing chamber (Ecoscreen, Erich Jaeger, Hoechberg, Germany). pH in EBC was measured immediately using a pH probe. In a representative group of 25 patients samples were deaerated with argon gas. This was to control for variations in pH ex vivo by removing CO2. EBC was acidic in bronchiectasis patients () compared to controls () and primary ciliary dyskinesia patients (). pH was related to lung volume but not disease severity. Repeated measures show EBC pH changes with symptoms. EBC is further acidified during an exacerbation of bronchiectasis (), this acidification persists following treatment (). EBC pH is not sufficiently sensitive or specific to monitor patients' health status or provide information to inform acute treatment decisions.


2012 ◽  
Vol 194 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Virginie de Broucker ◽  
Sidi Mohamed Hassoun ◽  
Sébastien Hulo ◽  
Nathalie Chérot-Kornobis ◽  
Rémi Nevière ◽  
...  

2019 ◽  
Vol 8 (11) ◽  
pp. 1783 ◽  
Author(s):  
Valentina Agnese Ferraro ◽  
Stefania Zanconato ◽  
Eugenio Baraldi ◽  
Silvia Carraro

Background: In the context of the so-called unified airway theory, chronic rhinosinusitis (CRS) and asthma may coexist. The inflammation underlying these conditions can be studied through the aid of biomarkers. Main body: We described the main biological mediators that have been studied in pediatric CRS and asthma, and, according to the available literature, we reported their potential role in the diagnosis and management of these conditions. As for CRS, we discussed the studies that investigated nasal nitric oxide (nNO), pendrin, and periostin. As for asthma, we discussed the role of fractional exhaled nitric oxide (feNO), the role of periostin, and that of biological mediators measured in exhaled breath condensate (EBC) and exhaled air (volatile organic compounds, VOCs). Conclusion: Among non-invasive biomarkers, nNO seems the most informative in CRS and feNO in asthma. Other biological mediators seem promising, but further studies are needed before they can be applied in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document