A non-tight chemomechanical coupling model for force-dependence of movement dynamics of molecular motors

2018 ◽  
Vol 20 (7) ◽  
pp. 4752-4759 ◽  
Author(s):  
Ping Xie ◽  
Hong Chen

We present a simple yet general model that can quantitatively reproduce diverse single-molecule experimental data on dimeric kinesin and myosin-V.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 287 ◽  
Author(s):  
Si-Kao Guo ◽  
Wei-Chi Wang ◽  
Peng-Ye Wang ◽  
Ping Xie

Kinesin-1, kinesin-2 and kinesin-5 are three families of a superfamily of motor proteins; which can walk processively on microtubule filaments by hydrolyzing ATP. It was experimentally shown that while the three kinesin dimers show similar feature on the force dependence of velocity, they show rather different features on the force dependence of run length. However, why the three families of kinesins show these rather different features is unclear. Here, we computationally studied the movement dynamics of the three dimers based on our proposed model. The simulated results reproduce well the available experimental data on the force dependence of velocity and run length. Moreover, the simulated results on the velocity and run length for the three dimers with altered neck linker lengths are also in quantitative agreement with the available experimental data. The studies indicate that the three families of kinesins show much similar movement mechanism and the rather different features on the force dependence of run length arise mainly from the difference in rate constants of the ATPase activity and neck linker docking. Additionally, the asymmetric (limping) movement dynamics of the three families of homodimers with and without altered neck linker lengths are studied, providing predicted results.


2019 ◽  
Vol 20 (19) ◽  
pp. 4911 ◽  
Author(s):  
Xie ◽  
Guo ◽  
Chen

A general kinetic model is presented for the chemomechanical coupling of dimeric kinesin molecular motors with and without extension of their neck linkers (NLs). A peculiar feature of the model is that the rate constants of ATPase activity of a kinesin head are independent of the strain on its NL, implying that the heads of the wild-type kinesin dimer and the mutant with extension of its NLs have the same force-independent rate constants of the ATPase activity. Based on the model, an analytical theory is presented on the force dependence of the dynamics of kinesin dimers with and without extension of their NLs at saturating ATP. With only a few adjustable parameters, diverse available single molecule data on the dynamics of various kinesin dimers, such as wild-type kinesin-1, kinesin-1 with mutated residues in the NLs, kinesin-1 with extension of the NLs and wild-type kinesin-2, under varying force and ATP concentration, can be reproduced very well. Additionally, we compare the power production among different kinesin dimers, showing that the mutation in the NLs reduces the power production and the extension of the NLs further reduces the power production.


2021 ◽  
Vol 38 (11) ◽  
pp. 118701
Author(s):  
Yu-Ru Liu ◽  
Peng-Ye Wang ◽  
Wei Li ◽  
Ping Xie

DNA polymerases are an essential class of enzymes or molecular motors that catalyze processive DNA syntheses during DNA replications. A critical issue for DNA polymerases is their molecular mechanism of processive DNA replication. We have proposed a model for chemomechanical coupling of DNA polymerases before, based on which the predicted results have been provided about the dependence of DNA replication velocity upon the external force on Klenow fragment of DNA polymerase I. Here, we performed single molecule measurements of the replication velocity of Klenow fragment under the external force by using magnetic tweezers. The single molecule data verified quantitatively the previous theoretical predictions, which is critical to the chemomechanical coupling mechanism of DNA polymerases. A prominent characteristic for the Klenow fragment is that the replication velocity is independent of the assisting force whereas the velocity increases largely with the increase of the resisting force, attains the maximum velocity at about 3.8 pN and then decreases with the further increase of the resisting force.


RSC Advances ◽  
2019 ◽  
Vol 9 (46) ◽  
pp. 26734-26747 ◽  
Author(s):  
Ping Xie

The paper presents a model of chemomechanical coupling of myosin-V motor, explaining the dynamics under varying force and ATP concentrations.


Author(s):  
Maria Dienerowitz ◽  
Jamieson A.L. Howard ◽  
Steven D. Quinn ◽  
Frank Dienerowitz ◽  
Mark C. Leake

2007 ◽  
Vol 47 (supplement) ◽  
pp. S145
Author(s):  
Jun Kozuka ◽  
Yoshiharu Ishii ◽  
Toshio Yanagida

2005 ◽  
Vol 45 (supplement) ◽  
pp. S168
Author(s):  
T. Komori ◽  
S. Nishikawa ◽  
T. Ariga ◽  
A.H. Iwane ◽  
H. Yamakawa ◽  
...  

Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 213-218 ◽  
Author(s):  
Caspar Rüegg ◽  
Claudia Veigel ◽  
Justin E. Molloy ◽  
Stephan Schmitz ◽  
John C. Sparrow ◽  
...  

Muscle myosin II is an ATP-driven, actin-based molecular motor. Recent developments in optical tweezers technology have made it possible to study movement and force production on the single-molecule level and to find out how different myosin isoforms may have adapted to their specific physiological roles.


Sign in / Sign up

Export Citation Format

Share Document