Molecular dynamics studies of irradiation effects on hydrogen isotope diffusion through nickel crystals and grain boundaries

2018 ◽  
Vol 20 (1) ◽  
pp. 520-534 ◽  
Author(s):  
X. W. Zhou ◽  
R. Dingreville ◽  
R. A. Karnesky

Molecular dynamics construction of the Arrhenius plot accounts for all possible diffusion paths in defective materials.

2016 ◽  
Vol 109-111 ◽  
pp. 678-683 ◽  
Author(s):  
Xingang Yu ◽  
Chengrui Liu ◽  
Tiansi Han ◽  
Xianglai Gan

1997 ◽  
Vol 492 ◽  
Author(s):  
H. Van Swygenhoven ◽  
M. Spaczér ◽  
A. Caro

ABSTRACTMolecular dynamics computer simulations of high load plastic deformation at temperatures up to 500K of Ni nanophase samples with mean grain size of 5 nm are reported. Two types of samples are considered: a polycrystal nucleated from different seeds, each having random location and random orientation, representing a sample with mainly high angle grain boundaries, and polycrystals with seeds located at the same places as before, but with a limited missorientation representing samples with mainly low angle grain boundaries. The structure of the grain boundaries is studied by means of pair distribution functions, coordination number, atom energetics, and common neighbour analysis. Plastic behaviour is interpreted in terms of grain-boundary viscosity, controlled by a self diffusion mechanism at the disordered interface activated by thermal energy and stress.


2018 ◽  
Vol 20 (20) ◽  
pp. 13944-13951 ◽  
Author(s):  
Pedro Augusto Franco Pinheiro Moreira ◽  
Roberto Gomes de Aguiar Veiga ◽  
Ingrid de Almeida Ribeiro ◽  
Rodrigo Freitas ◽  
Julian Helfferich ◽  
...  

First-principles and classical molecular dynamics simulations show that diffusion of water molecules at pre-melted grain boundaries in ice is glassy-like, showing sub-diffusive behavior.


2018 ◽  
Vol 97 (5) ◽  
Author(s):  
Oscar A. Restrepo ◽  
Normand Mousseau ◽  
Mickaël Trochet ◽  
Fedwa El-Mellouhi ◽  
Othmane Bouhali ◽  
...  

Author(s):  
MD Imrul Reza Shishir ◽  
Alireza Tabarraei

Abstract The fracture properties of various grain boundaries in graphene are investigated using the cohesive zone method (CZM). Molecular dynamics simulations are conducted using REBO2+S potential in order to develop a cohesive zone model for graphene grain boundaries using a double cantilever bicrystalline graphene sheet. The cohesive zone model is used to investigate the traction–separation law to understand the separation-work and strength of grain boundaries.


Author(s):  
Ryo Kikuchi ◽  
Shujiro Suzuki ◽  
Ken Suzuki

Abstract Ni-based superalloys with excellent high temperature strength have been used in advanced thermal power plants. It was found that grain boundary cracking is caused in the alloy under creep-fatigue loading due to the degradation of the crystallinity of grain boundaries and the grain boundary cracking degrades the lifetime of the alloy drastically. In order to clarify the mechanism of intergranular cracking, in this research, static and dynamic strains were applied to a bicrystal structure of the alloy perpendicularly to the grain boundary using molecular dynamics analysis. In addition, the effect of the accumulation of vacancies in the area with high-density of dislocations on the strength of the bicrystal structure was analysed. It was found that the fracture mode of the bicrystal structure changed from ductile transgranular fracture to brittle intergranular one as strong functions of the combination of Schmid factor of the two grains and the density of defects around the grain boundary. The local heavy plastic deformation occurred around the grain boundary with large difference in Schmid factor between nearby grains and the diffusion of the newly grown dislocations and vacancies was suppressed by the large strain field due to the large mismatch of the crystallographic orientation between the grains. The accumulation of vacancies accelerated the local plastic deformation around the grain boundary. Therefore, the mechanism of the acceleration of intergranular cracking under creep-fatigue loading was successfully clarified by MD analysis.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1533
Author(s):  
Haichao Zhang ◽  
Xufeng Wang ◽  
Huirong Li ◽  
Changqing Li ◽  
Yungang Li

The molecular dynamics (MD) method was used to simulate and calculate the segregation energy and cohesive energy of Cu atoms at the Σ3{111}(110) and Σ3{112}(110) grain boundaries, and the tensile properties of the BCC-Fe crystal, with the grain boundaries containing coherent Cu clusters of different sizes (a diameter of 10 Å, 15 Å and 20 Å). The results showed that Cu atoms will spontaneously segregate towards the grain boundaries and tend to exist in the form of large-sized, low-density Cu clusters at the grain boundaries. When Cu cluster exists at the Σ3{111}(110) grain boundary, the increase in the size of the Cu cluster leads to an increase in the probability of vacancy formation inside the Cu cluster during the tensile process, weakening the breaking strength of the crystal. When the Cu cluster exists at the Σ3{112}(110) grain boundary, the Cu cluster with a diameter of 10 Å will reduce the strain hardening strength of the crystal, but the plastic deformation ability of the crystal will not be affected, and the existence of Cu clusters with a diameter of 15 Å and 20 Å will suppress the structural phase transformation of the crystal, and significantly decrease the plastic deformation ability of the crystal, thereby resulting in embrittlement of the crystal.


Sign in / Sign up

Export Citation Format

Share Document