Binding affinity prediction of nanobody–protein complexes by scoring of molecular dynamics trajectories

2018 ◽  
Vol 20 (5) ◽  
pp. 3438-3444 ◽  
Author(s):  
Miguel A. Soler ◽  
Sara Fortuna ◽  
Ario de Marco ◽  
Alessandro Laio

Accurate binding affinity prediction of modelled nanobody–protein complexes by using the assistance of molecular dynamics simulations for achieving stable conformations.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Wajid Arshad Abbasi ◽  
Adiba Yaseen ◽  
Fahad Ul Hassan ◽  
Saiqa Andleeb ◽  
Fayyaz Ul Amir Afsar Minhas

Abstract Background Determining binding affinity in protein-protein interactions is important in the discovery and design of novel therapeutics and mutagenesis studies. Determination of binding affinity of proteins in the formation of protein complexes requires sophisticated, expensive and time-consuming experimentation which can be replaced with computational methods. Most computational prediction techniques require protein structures that limit their applicability to protein complexes with known structures. In this work, we explore sequence-based protein binding affinity prediction using machine learning. Method We have used protein sequence information instead of protein structures along with machine learning techniques to accurately predict the protein binding affinity. Results We present our findings that the true generalization performance of even the state-of-the-art sequence-only predictor is far from satisfactory and that the development of machine learning methods for binding affinity prediction with improved generalization performance is still an open problem. We have also proposed a sequence-based novel protein binding affinity predictor called ISLAND which gives better accuracy than existing methods over the same validation set as well as on external independent test dataset. A cloud-based webserver implementation of ISLAND and its python code are available at https://sites.google.com/view/wajidarshad/software. Conclusion This paper highlights the fact that the true generalization performance of even the state-of-the-art sequence-only predictor of binding affinity is far from satisfactory and that the development of effective and practical methods in this domain is still an open problem.


2015 ◽  
Vol 13 (10) ◽  
pp. 3070-3085 ◽  
Author(s):  
Miguel M. Santos ◽  
Igor Marques ◽  
Sílvia Carvalho ◽  
Cristina Moiteiro ◽  
Vítor Félix

The binding affinity of a dichlorocalix[2]arene[2]triazine based bis-urea azamacrocycle was investigated towards a wide range of bio-relevant dicarboxylate anions by a combination of 1H NMR titrations in CDCl3 and molecular dynamics simulations.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1197
Author(s):  
Vikas Kumar ◽  
Shraddha Parate ◽  
Gunjan Thakur ◽  
Gihwan Lee ◽  
Hyeon-Su Ro ◽  
...  

The cyclin-dependent kinase 7 (CDK7) plays a crucial role in regulating the cell cycle and RNA polymerase-based transcription. Overexpression of this kinase is linked with various cancers in humans due to its dual involvement in cell development. Furthermore, emerging evidence has revealed that inhibiting CDK7 has anti-cancer effects, driving the development of novel and more cost-effective inhibitors with enhanced selectivity for CDK7 over other CDKs. In the present investigation, a pharmacophore-based approach was utilized to identify potential hit compounds against CDK7. The generated pharmacophore models were validated and used as 3D queries to screen 55,578 natural drug-like compounds. The obtained compounds were then subjected to molecular docking and molecular dynamics simulations to predict their binding mode with CDK7. The molecular dynamics simulation trajectories were subsequently used to calculate binding affinity, revealing four hits—ZINC20392430, SN00112175, SN00004718, and SN00262261—having a better binding affinity towards CDK7 than the reference inhibitors (CT7001 and THZ1). The binding mode analysis displayed hydrogen bond interactions with the hinge region residues Met94 and Glu95, DFG motif residue Asp155, ATP-binding site residues Thr96, Asp97, and Gln141, and quintessential residue outside the kinase domain, Cys312 of CDK7. The in silico selectivity of the hits was further checked by docking with CDK2, the close homolog structure of CDK7. Additionally, the detailed pharmacokinetic properties were predicted, revealing that our hits have better properties than established CDK7 inhibitors CT7001 and THZ1. Hence, we argue that proposed hits may be crucial against CDK7-related malignancies.


Author(s):  
Logan Thrasher Collins ◽  
Tamer Elkholy ◽  
Shafat Mubin ◽  
David Hill ◽  
Ricky Williams ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Alfonso T. García-Sosa ◽  
Indrek Tulp ◽  
Kent Langel ◽  
Ülo Langel

The binding affinity of a series of cell-penetrating peptides (CPP) was modeled through docking and making use of the number of intermolecular hydrogen bonds, lipophilic contacts, and the number of sp3 molecular orbital hybridization carbons. The new ranking of the peptides is consistent with the experimentally determined efficiency in the downregulation of luciferase activity, which includes the peptides’ ability to bind and deliver the siRNA into the cell. The predicted structures of the complexes of peptides to siRNA were stable throughout 10 ns long, explicit water molecular dynamics simulations. The stability and binding affinity of peptide-siRNA complexes was related to the sidechains and modifications of the CPPs, with the stearyl and quinoline groups improving affinity and stability. The reranking of the peptides docked to siRNA, together with explicit water molecular dynamics simulations, appears to be well suited to describe and predict the interaction of CPPs with siRNA.


2020 ◽  
pp. 299-332 ◽  
Author(s):  
K. Veluraja ◽  
N. R. Siva Shanmugam ◽  
J. Jino Blessy ◽  
R. A. Jeyaram ◽  
B. Lalithamaheswari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document