Investigating bacterial community changes and organic substrate degradation in microbial fuel cells operating on real human urine

2017 ◽  
Vol 3 (5) ◽  
pp. 897-904 ◽  
Author(s):  
S. G. Barbosa ◽  
L. Peixoto ◽  
A. Ter Heijne ◽  
P. Kuntke ◽  
M. M. Alves ◽  
...  

New insights are reported on the degradation of organics in urine, changes in the anodic bacterial community and MFC performance on urine.

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 135
Author(s):  
Asim Ali Yaqoob ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Khalid Umar ◽  
Showkat Ahmad Bhawani ◽  
Anish Khan ◽  
...  

Benthic microbial fuel cells (BMFCs) are considered to be one of the eco-friendly bioelectrochemical cell approaches nowadays. The utilization of waste materials in BMFCs is to generate energy and concurrently bioremediate the toxic metals from synthetic wastewater, which is an ideal approach. The use of novel electrode material and natural organic waste material as substrates can minimize the present challenges of the BMFCs. The present study is focused on cellulosic derived graphene-polyaniline (GO-PANI) composite anode fabrication in order to improve the electron transfer rate. Several electrochemical and physicochemical techniques are used to characterize the performance of anodes in BMFCs. The maximum current density during polarization behavior was found to be 87.71 mA/m2 in the presence of the GO-PANI anode with sweet potato as an organic substrate in BMFCs, while the GO-PANI offered 15.13 mA/m2 current density under the close circuit conditions in the presence of 1000 Ω external resistance. The modified graphene anode showed four times higher performance than the unmodified anode. Similarly, the remediation efficiency of GO-PANI was 65.51% for Cd (II) and 60.33% for Pb (II), which is also higher than the unmodified graphene anode. Furthermore, multiple parameters (pH, temperature, organic substrate) were optimized to validate the efficiency of the fabricated anode in different environmental atmospheres via BMFCs. In order to ensure the practice of BMFCs at industrial level, some present challenges and future perspectives are also considered briefly.


2013 ◽  
Vol 38 (26) ◽  
pp. 11543-11551 ◽  
Author(s):  
C. Santoro ◽  
I. Ieropoulos ◽  
J. Greenman ◽  
P. Cristiani ◽  
T. Vadas ◽  
...  

2013 ◽  
Vol 11 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Guangyu ZHOU ◽  
Naoki YOKOYAMA ◽  
Yuichiro YOSHINO ◽  
Takahiro YAMASHITA ◽  
Yasunori KAWAGOSHI

Author(s):  
H. O. Stanley ◽  
C. J. Ugboma

The dynamics of electrochemicals and microbial populations during anaerobic treatment of human urine in soil microbial fuel cells (MFCs) were investigated. The experimental MFC was supplemented with daily urine input while the control MFC was without urine. During the treatment process, electrochemical and microbiological parameters in effluent of the urine-supplemented MFC were monitored using standard methods. The pH of the urine increased from 5.70 to 7.16 after 15 days of treatment in the urine supplemented MFC. The concentration of phosphorus, potassium, sodium, calcium, magnesium, total nitrogen and total organic carbon of the urine reduced from 0.76 g/l to 0.07 g/l, 1.91 g/l to 0.17 g/l, 2.24 g/l to 0.09 g/l, 0.14 g/l to 0.003 g/l, 0.08 g/l to 0.00 g/l, 8.25 g/l to 0.74 g/l and 7.10 g/l to 0.53 g/l respectively after 15 days of treatment. Furthermore, Open voltage of the urine supplemented MFC ranged from 5.63 V to 10.34 V while Open voltage of the control ranged from 1.84 V to 5.02 V after 15 days of operation. The population of facultative bacteria (FAB) and strict anaerobic bacteria (SAB) ranged from 64.2 x 104 CFU to 36.2 x 104 CFU and 21.2 x104 CFU to 61.3 x104 CFU respectively with time. The urine supplemented MFC performed significantly (p < 0.05) better than the control with respect to voltage output while significantly reduced concentrations of organic carbon, nitrogen and metallic (salt) species were found. Therefore, the soil MFC may be applied as a waste management option to treat human urine while generating electricity before disposal.


2013 ◽  
Vol 18 ◽  
pp. 534-539 ◽  
Author(s):  
Liping Huang ◽  
Yuliang Sun ◽  
Yaxuan Liu ◽  
Ning Wang

2012 ◽  
Vol 46 (3) ◽  
pp. 1914-1922 ◽  
Author(s):  
Sara J. Dunaj ◽  
Joseph J. Vallino ◽  
Mark E. Hines ◽  
Marcus Gay ◽  
Christine Kobyljanec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document