scholarly journals Quantitative SERS by hot spot normalization – surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance

2017 ◽  
Vol 205 ◽  
pp. 491-504 ◽  
Author(s):  
Haoran Wei ◽  
Alexis McCarthy ◽  
Junyeob Song ◽  
Wei Zhou ◽  
Peter J. Vikesland

The performance of surface-enhanced Raman spectroscopy (SERS) substrates is typically evaluated by calculating an enhancement factor (EF). However, it is challenging to accurately calculate EF values since the calculation often requires the use of model analytes and requires assumptions about the number of analyte molecules within the laser excitation volume. Furthermore, the measured EF values are target analyte dependent and thus it is challenging to compare substrates with EF values obtained using different analytes. In this study, we propose an alternative evaluation parameter for SERS substrate performance that is based on the intensity of the surface plasmon enhanced Rayleigh band (IRayleigh) that originates from the amplified spontaneous emission (ASE) of the laser. Compared to the EF, IRayleigh reflects the enhancing capability of the substrate itself, is easy to measure without the use of any analytes, and is universally applicable for the comparison of SERS substrates. Six SERS substrates with different states (solid, suspended in liquid, and hydrogel), different plasmonic nanoparticle identities (silver and gold), as well as different nanoparticle sizes and shapes were used to support our hypothesis. The results show that there are excellent correlations between the measured SERS intensities and IRayleigh as well as between the SERS homogeneity and the variation of IRayleigh acquired with the six SERS substrates. These results suggest that IRayleigh can be used as an evaluation parameter for both SERS substrate efficiency and reproducibility.

2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Quynh-Ngan Luong ◽  
Tran Cao Dao ◽  
Thi Thu Vu ◽  
Manh Cuong Nguyen ◽  
Nhu Duong Nguyen

Surface-enhanced Raman spectroscopy (SERS) is increasingly being used as a method for detecting traces of contaminants in a variety of specimens. In order to maximize SERS’s performance, the most important thing is to have highly active SERS substrates. In this report, we present a simple method for synthesizing silver nanodendrites (AgNDs) on the surface of a copper (Cu) plate using chemical deposition method. The results showed that, after fabrication, a large number of fern-like AgNDs formed on the Cu surface. These AgNDs are distributed evenly across the entire Cu surface with a relatively thick density. The prepared AgNDs were applied as SERS substrates for detecting Rhodamine 6G (R6G) in chili powders. The results showed that, using the prepared AgNDs substrates, as low as 10−10 M R6G in chili powders can be detected. This demonstrates the applicability of fabricated AgNDs as a highly active SERS substrate.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Richard J. C. Brown ◽  
Jian Wang ◽  
Martin J. T. Milton

The requirement to optimise the balance between signal enhancement and reproducibility in surface enhanced Raman spectroscopy (SERS) is stimulating the development of novel substrates for enhancing Raman signals. This paper describes the application of finite element electromagnetic modelling to predict the Raman enhancement produced from a variety of SERS substrates with differently sized, spaced and shaped morphologies with nanometre dimensions. For the first time, a theoretical comparison between four major generic types of SERS substrate (including metal nanoparticles, structured surfaces, and sharp tips) has been performed and the results are presented and discussed. The results of the modelling are consistent with published experimental data from similar substrates.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2905
Author(s):  
Buse Bilgin ◽  
Cenk Yanik ◽  
Hulya Torun ◽  
Mehmet Cengiz Onbasli

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and molecule-specific detection technique that uses surface plasmon resonances to enhance Raman scattering from analytes. In SERS system design, the substrates must have minimal or no background at the incident laser wavelength and large Raman signal enhancement via plasmonic confinement and grating modes over large areas (i.e., squared millimeters). These requirements impose many competing design constraints that make exhaustive parametric computational optimization of SERS substrates prohibitively time consuming. Here, we demonstrate a genetic-algorithm (GA)-based optimization method for SERS substrates to achieve strong electric field localization over wide areas for reconfigurable and programmable photonic SERS sensors. We analyzed the GA parameters and tuned them for SERS substrate optimization in detail. We experimentally validated the model results by fabricating the predicted nanostructures using electron beam lithography. The experimental Raman spectrum signal enhancements of the optimized SERS substrates validated the model predictions and enabled the generation of a detailed Raman profile of methylene blue fluorescence dye. The GA and its optimization shown here could pave the way for photonic chips and components with arbitrary design constraints, wavelength bands, and performance targets.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1741
Author(s):  
Hiroyuki Takei ◽  
Kazuki Nagata ◽  
Natalie Frese ◽  
Armin Gölzhäuser ◽  
Takayuki Okamoto

Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for obtaining structural information of molecules in solution at low concentrations. While commercial SERS substrates are available, high costs prevent their wide-spread use in the medical field. One solution is to prepare requisite noble metal nanostructures exploiting natural nanostructures. As an example of biomimetic approaches, butterfly wing scales with their intricate nanostructures have been found to exhibit exquisite SERS activity when coated with silver. Selecting appropriate scales from particular butterfly species and depositing silver of certain thicknesses leads to significant SERS activity. For morphological observations we used scanning electron microscopes as well as a helium ion microscope, highly suitable for morphological characterization of poorly conducting samples. In this paper, we describe a protocol for carrying out SERS measurements based on butterfly wing scales and demonstrate its LOD with a common Raman reporter, rhodamine 6 G. We also emphasize what special care is necessary in such measurements. We also try to shed light on what makes scales work as SERS substrates by carefully modifying the original nanostructures. Such a study allows us to either use scales directly as a raw material for SERS substrate or provides an insight as to what nanostructures need to be recreated for synthetic SERS substrates.


Nanophotonics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1529-1540
Author(s):  
Xianwu Xiu ◽  
Liping Hou ◽  
Jing Yu ◽  
Shouzhen Jiang ◽  
Chonghui Li ◽  
...  

Abstract Highly efficient plasmon-driven catalysis and excellent surface-enhanced Raman spectroscopy (SERS) performance are proportional to the square of the local electromagnetic field (hot spot). However, a proven way to realize the enhancement in intensity and density of “hot spot” still needs to be investigated. Here, we report on multilayered Ag nanoparticle (Ag NP)/graphene coupled to an underlying Cu film system (MAgNP-CuF) which can be used as an effective SERS substrates realizing ultra-sensitive detection for toxic molecules and in situ monitoring the plasmon-driven reaction for p-nitrothiophenol (PNTP) to p,p′-dimercaptobenzene (DMAB) conversion. The mechanism of ultra-sensitive SERS response and catalytic reaction is investigated via Ag NP/graphene layer-dependent experiments combined with theoretical simulations. The research found that the intensity and density of “hot spot” can be effectively manipulated by the number of plasmonic layers, and the bottom Cu film could also reflect the scattered and excitation beam and would further enhance the Raman signals. Moreover, the MAgNP-CuF exhibits outstanding performance in stability and reproducibility. We believe that this concept of multilayered plasmonic structures would be widely used not only in the field of SERS but also in the wider research in photocatalysis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 587
Author(s):  
Zirui Wang ◽  
Yanyan Huo ◽  
Tingyin Ning ◽  
Runcheng Liu ◽  
Zhipeng Zha ◽  
...  

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10−10 and 10−8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1531 ◽  
Author(s):  
Shi Bai ◽  
Yongjun Du ◽  
Chunyan Wang ◽  
Jian Wu ◽  
Koji Sugioka

Surface-enhanced Raman spectroscopy (SERS) has advanced over the last four decades and has become an attractive tool for highly sensitive analysis in fields such as medicine and environmental monitoring. Recently, there has been an urgent demand for reusable and long-lived SERS substrates as a means of reducing the costs associated with this technique To this end, we fabricated a SERS substrate comprising a silicon nanowire array coated with silver nanoparticles, using metal-assisted chemical etching followed by photonic reduction. The morphology and growth mechanism of the SERS substrate were carefully examined and the performance of the fabricated SERS substrate was tested using rhodamine 6G and dopamine hydrochloride. The data show that this new substrate provides an enhancement factor of nearly 1 × 108. This work demonstrates that a silicon nanowire array coated with silver nanoparticles is sensitive and sufficiently robust to allow repeated reuse. These results suggest that this newly developed technique could allow SERS to be used in many commercial applications.


2021 ◽  
Author(s):  
revathy m s ◽  
D Murugesan ◽  
Naidu Dhanpal Jayram

Abstract Thin films and Surface Enhanced Raman spectroscopy have a strong bonding towards development of Sensors. From last 4 decades SERS has been used as effective tool for detection of toxic dyes, in food industry and agriculture world. To minimize the cost and fabrication over large surface is the most challenging task in substrate fabrication. In the present work an attempt has been made towards dual coatings, which could act as an effective SERS Substrates. An effective and facile approach of low cost bi-metallic Nanostructured film has been fabricated using thermal evaporation. Using the standard characterization techniques such as FE-SEM and XRD, the obtained films were Rhodamine 6G was used as an analyte for the SERS studies. The detection of R6G was up to 10− 10mol l− 1solution.The present bi-metallic coating can be serves as an excellent SERS active surface and provides a versatile pathway to fabricate anisotropic nanostructure on a glass film.


Sign in / Sign up

Export Citation Format

Share Document