scholarly journals Gel-seq: whole-genome and transcriptome sequencing by simultaneous low-input DNA and RNA library preparation using semi-permeable hydrogel barriers

Lab on a Chip ◽  
2017 ◽  
Vol 17 (15) ◽  
pp. 2619-2630 ◽  
Author(s):  
Gordon D. Hoople ◽  
Andrew Richards ◽  
Yan Wu ◽  
Kota Kaneko ◽  
Xiaolin Luo ◽  
...  

Gel-seq enables researchers to simultaneously prepare libraries for both DNA and RNA from 100 cells.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kathy E. Raven ◽  
Sophia T. Girgis ◽  
Asha Akram ◽  
Beth Blane ◽  
Danielle Leek ◽  
...  

AbstractWhole-genome sequencing is likely to become increasingly used by local clinical microbiology laboratories, where sequencing volume is low compared with national reference laboratories. Here, we describe a universal protocol for simultaneous DNA extraction and sequencing of numerous different bacterial species, allowing mixed species sequence runs to meet variable laboratory demand. We assembled test panels representing 20 clinically relevant bacterial species. The DNA extraction process used the QIAamp mini DNA kit, to which different combinations of reagents were added. Thereafter, a common protocol was used for library preparation and sequencing. The addition of lysostaphin, lysozyme or buffer ATL (a tissue lysis buffer) alone did not produce sufficient DNA for library preparation across the species tested. By contrast, lysozyme plus lysostaphin produced sufficient DNA across all 20 species. DNA from 15 of 20 species could be extracted from a 24-h culture plate, while the remainder required 48–72 h. The process demonstrated 100% reproducibility. Sequencing of the resulting DNA was used to recapitulate previous findings for species, outbreak detection, antimicrobial resistance gene detection and capsular type. This single protocol for simultaneous processing and sequencing of multiple bacterial species supports low volume and rapid turnaround time by local clinical microbiology laboratories.


RNA Biology ◽  
2020 ◽  
Vol 17 (9) ◽  
pp. 1284-1292
Author(s):  
Fatima Heinicke ◽  
Xiangfu Zhong ◽  
Manuela Zucknick ◽  
Johannes Breidenbach ◽  
Arvind Y.M. Sundaram ◽  
...  

2016 ◽  
Vol 45 (6) ◽  
pp. e36-e36 ◽  
Author(s):  
Amanda Raine ◽  
Erika Manlig ◽  
Per Wahlberg ◽  
Ann-Christine Syvänen ◽  
Jessica Nordlund

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0254971
Author(s):  
Federico Rossi ◽  
Alessandro Crnjar ◽  
Federico Comitani ◽  
Rodrigo Feliciano ◽  
Leonie Jahn ◽  
...  

Tree ring features are affected by environmental factors and therefore are the basis for dendrochronological studies to reconstruct past environmental conditions. Oak wood often provides the data for these studies because of the durability of oak heartwood and hence the availability of samples spanning long time periods of the distant past. Wood formation is regulated in part by epigenetic mechanisms such as DNA methylation. Studies of the methylation state of DNA preserved in oak heartwood thus could identify epigenetic tree ring features informing on past environmental conditions. In this study, we aimed to establish protocols for the extraction of DNA, the high-throughput sequencing of whole-genome DNA libraries (WGS) and the profiling of DNA methylation by whole-genome bisulfite sequencing (WGBS) for oak (Quercus robur) heartwood drill cores taken from the trunks of living standing trees spanning the AD 1776-2014 time period. Heartwood contains little DNA, and large amounts of phenolic compounds known to hinder the preparation of high-throughput sequencing libraries. Whole-genome and DNA methylome library preparation and sequencing consistently failed for oak heartwood samples more than 100 and 50 years of age, respectively. DNA fragmentation increased with sample age and was exacerbated by the additional bisulfite treatment step during methylome library preparation. Relative coverage of the non-repetitive portion of the oak genome was sparse. These results suggest that quantitative methylome studies of oak hardwood will likely be limited to relatively recent samples and will require a high sequencing depth to achieve sufficient genome coverage.


BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 662 ◽  
Author(s):  
Yanjie Xu ◽  
Shan Gao ◽  
Yingjie Yang ◽  
Mingyun Huang ◽  
Lina Cheng ◽  
...  

2022 ◽  
Author(s):  
Jason Nguyen ◽  
Rebecca Hickman ◽  
Tracy Lee ◽  
Natalie Prystajecky ◽  
John Tyson

This procedure provides instructions on how to prepare DNA libraries for whole genome sequencing on an Illumina MiSeq or NextSeq using Illumina’s DNA Prep Library Preparation Kit scaled to half reaction volumes with modifications to the post-PCR procedures; tagmentation stop buffer and associated washes are removed and libraries are pooled post PCR then a single size selection is performed. This protocol is used to sequence SARS-CoV-2 using the cDNA/PCR protocol: https://dx.doi.org/10.17504/protocols.io.b3viqn4e


Sign in / Sign up

Export Citation Format

Share Document