scholarly journals Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer

RSC Advances ◽  
2017 ◽  
Vol 7 (32) ◽  
pp. 19457-19463 ◽  
Author(s):  
Guoqing Tong ◽  
Zihang Song ◽  
Chengdong Li ◽  
Yaolong Zhao ◽  
Linwei Yu ◽  
...  

Hybrid perovskite solar cells (PSCs) are promising candidates in exploring high performance flexible photovoltaics, where a low-temperature-processed metal oxide electron transfer layer (ETL) is highly preferable.

Rare Metals ◽  
2021 ◽  
Author(s):  
Jia-Xing Song ◽  
Xin-Xing Yin ◽  
Zai-Fang Li ◽  
Yao-Wen Li

Abstract As a promising photovoltaic technology, perovskite solar cells (pero-SCs) have developed rapidly over the past few years and the highest power conversion efficiency is beyond 25%. Nowadays, the planar structure is universally popular in pero-SCs due to the simple processing technology and low-temperature preparation. Electron transport layer (ETL) is verified to play a vital role in the device performance of planar pero-SCs. Particularly, the metal oxide (MO) ETL with low-cost, superb versatility, and excellent optoelectronic properties has been widely studied. This review mainly focuses on recent developments in the use of low-temperature-processed MO ETLs for planar pero-SCs. The optical and electronic properties of widely used MO materials of TiO2, ZnO, and SnO2, as well as the optimizations of these MO ETLs are briefly introduced. The commonly used methods for depositing MO ETLs are also discussed. Then, the applications of different MO ETLs on pero-SCs are reviewed. Finally, the challenge and future research of MO-based ETLs toward practical application of efficient planar pero-SCs are proposed. Graphical abstract


2020 ◽  
Vol 8 (10) ◽  
pp. 5308-5314 ◽  
Author(s):  
Xia Yang ◽  
Hanjun Yang ◽  
Xiaotian Hu ◽  
Wenting Li ◽  
Zhimin Fang ◽  
...  

High-efficiency flexible CsPbI2Br PSCs are designed by introducing Al-doped ZnO as an electron-transport layer and tert-butyl cyanoacetate as a hole passivation layer. The optimized PSC exhibits outstanding stability and a champion PCE of 15.08%.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1676
Author(s):  
Md. Shahiduzzaman ◽  
Daiki Kuwahara ◽  
Masahiro Nakano ◽  
Makoto Karakawa ◽  
Kohshin Takahashi ◽  
...  

The most frequently used n-type electron transport layer (ETL) in high-efficiency perovskite solar cells (PSCs) is based on titanium oxide (TiO2) films, involving a high-temperature sintering (>450 °C) process. In this work, a dense, uniform, and pinhole-free compact titanium dioxide (TiOx) film was prepared via a facile chemical bath deposition process at a low temperature (80 °C), and was applied as a high-quality ETL for efficient planar PSCs. We tested and compared as-deposited substrates sintered at low temperatures (< 150 °C) and high temperatures (> 450 °C), as well as their corresponding photovoltaic properties. PSCs with a high-temperature treated TiO2 compact layer (CL) exhibited power conversion efficiencies (PCEs) as high as 15.50%, which was close to those of PSCs with low-temperature treated TiOx (14.51%). This indicates that low-temperature treated TiOx can be a potential ETL candidate for planar PSCs. In summary, this work reports on the fabrication of low-temperature processed PSCs, and can be of interest for the design and fabrication of future low-cost and flexible solar modules.


2020 ◽  
Author(s):  
Miao Yu ◽  
Haoxuan Sun ◽  
Xiaona Huang ◽  
Yichao Yan ◽  
Wanli Zhang

Abstract Recently, reported perovskite solar cells (PSCs) with high power conversion efficiency (PCE) are mostly based on mesoporous structures containing mesoporous titanium oxide (TiO 2 ) which is the main factor to reduce the overall hysteresis. However, existing fabrication approaches for mesoporous TiO 2 generally require a high temperature (>450 °C) annealing process. Moreover, there is still plenty of scope for improvement in terms of increasing the electron conductivity and reducing the carrier recombination. Herein, a facile one-step, in situ and low-temperature method was developed to prepare an Nb:TiO 2 compact-mesoporous layer to serve as both a scaffold and an electron transport layer (ETL) in PSCs. The Nb:TiO 2 compact-mesoporous layer based PSCs exhibit suppressed hysteresis, which is attributed to the synergistic effect of the large interface surface area caused by nano-pin morphology on the surface and the improved carrier transportation caused by the presence of Nb. Such a high-quality compact-mesoporous layer allows the PSC achieve a remarkable PCE of 19.74%. This work promises an effective approach for creating hysteresis-less and high-efficiency PSCs based on compact-mesoporous structures with lower energy consumption and cost.


2021 ◽  
pp. 1-18
Author(s):  
Yaobo Li ◽  
Zhaohan Li ◽  
Fangze Liu ◽  
Jing Wei

This organic-inorganic hybrid perovskite materials have attracted great attention by virtue of their high absorption coefficient, low cost and simple film deposition technique. Based on these advantages, perovskite solar cells have reached an impressive power conversion efficiency over 25%. However, the low-temperature process inevitably leads to a large number of defects in the perovskite film. These defects would exacerbate the carrier recombination, induce crystal degradation, phase transformation and seriously affect the performance of devices. Studying the defects in perovskite film is of great significance for the development of high-performance perovskite solar cells. Herein, the authors summarise the causes, distribution and features of defects, as well as their effects on the performance of perovskite solar cells. Furthermore, some defect-passivation strategies on perovskite film or the device, including grain boundary passivation, surface passivation, capping layer modification and charge transport layer passivation, are discussed, respectively. Lastly, some remaining challenges in the commercialisation of perovskite solar cells are proposed.


2017 ◽  
Vol 9 (13) ◽  
pp. 11828-11836 ◽  
Author(s):  
Jérémy Barbé ◽  
Max L. Tietze ◽  
Marios Neophytou ◽  
Banavoth Murali ◽  
Erkki Alarousu ◽  
...  

2016 ◽  
Vol 4 (17) ◽  
pp. 6521-6526 ◽  
Author(s):  
Xiao Chen ◽  
Li Juan Tang ◽  
Shuang Yang ◽  
Yu Hou ◽  
Hua Gui Yang

A low-temperature processed flower-like TiO2 array layer was prepared and utilized as ETL in perovskite solar cells, leading to an enhanced power conversion efficiency (15.71 %) than that of traditional mesoporous TiO2 layer based devices (13.25 %) with less hysteresis.


Nano Energy ◽  
2017 ◽  
Vol 36 ◽  
pp. 102-109 ◽  
Author(s):  
Yu Hou ◽  
Xiao Chen ◽  
Shuang Yang ◽  
Yu Lin Zhong ◽  
Chunzhong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document