scholarly journals Untrasmall Bi2S3 nanodots for in vivo X-ray CT imaging-guided photothermal therapy of cancer

RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29672-29678 ◽  
Author(s):  
Zelun Li ◽  
Kelong Ai ◽  
Zhe Yang ◽  
Tianqi Zhang ◽  
Jianhua Liu ◽  
...  

Theranostic nanomedicine has shown tremendous promise for more effective and predictive cancer treatment by real-time mornitoring of the delivery of therapeutics to tumors and subsequent therapeutic response.

2017 ◽  
Vol 27 (01n02) ◽  
pp. 37-42
Author(s):  
T. Segawa ◽  
S. Harada ◽  
S. Ehara ◽  
K. Ishii ◽  
T. Sato ◽  
...  

Encapsulated protamine-hyaluronic acid particles containing carboplatin were prepared and their ability to release carboplatin was tested in vivo. Protamine–hyaluronic acid particles containing carboplatin were prepared by mixing protamine (1.6 mg) and hyaluronic acid (1.28 mg) into a 5 mg/mL carboplatin solution for 30 min at room temperature. A 1 mL solution of protamine–hyaluronic acid particles was poured into an ampule of COATSOME[Formula: see text] EL-010 (Nichiyu, Tokyo, Japan), shaken three times by hand, and allowed to incubate at room temperature for 15 min. Following that, 10 or 20 Gy of 100 kiloelectronvolt (KeV) soft X-ray was applied. The release of carboplatin was imaged using a microparticle-induced X-ray emission (PIXE) camera. The amount of carboplatin released was expressed as the amount of platinum released and measured via quantitative micro-PIXE analysis. The diameter of the generated encapsulated particles measured [Formula: see text] nm (mean ± standard error). The release of carboplatin from the encapsulated protamine–hyaluronic acid particles was observed under a micro-PIXE camera. The amount of carboplatin released was [Formula: see text] under 10 Gy of radiation, and [Formula: see text] under 20 Gy of radiation, which was a sufficient dose for cancer treatment. However, 10 or 20 Gy of radiation is much greater than the dose used for clinical cancer treatment (2 Gy). Further research to reduce the radiation dose to 2 Gy in order to release sufficient carboplatin for cancer treatment is required.


2014 ◽  
Vol 26 (48) ◽  
pp. 8210-8216 ◽  
Author(s):  
Mei Chen ◽  
Shaoheng Tang ◽  
Zhide Guo ◽  
Xiaoyong Wang ◽  
Shiguang Mo ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rhiannon P. Murrie ◽  
Freda Werdiger ◽  
Martin Donnelley ◽  
Yu-wei Lin ◽  
Richard P. Carnibella ◽  
...  

Author(s):  
Jun Yao ◽  
Chuanda Zhu ◽  
Tianjiao Peng ◽  
Qiang Ma ◽  
Shegan Gao

Recently, organic–inorganic hybrid materials have gained much attention as effective photothermal agents for cancer treatment. In this study, Pluronic F127 hydrogel-coated titanium carbide (Ti3C2) nanoparticles were utilized as an injectable photothermal agent. The advantages of these nanoparticles are their green synthesis and excellent photothermal efficiency. In this system, lasers were mainly used to irradiate Ti3C2 nanoparticles to produce a constant high temperature, which damaged cancer cells. The nanoparticles were found to be stable during storage at low temperatures for at least 2 weeks. The Ti3C2 nanoparticles exhibited a shuttle-shaped structure, and the hydrogels presented a loosely meshed structure. In addition, Ti3C2 nanoparticles did not affect the reversible temperature sensitivity of the gel, and the hydrogel did not affect the photothermal properties of Ti3C2 nanoparticles. The in vitro and in vivo results show that this hydrogel system can effectively inhibit tumor growth upon exposure to near-infrared irradiation with excellent biocompatibility and biosafety. The photothermal agent-embedded hydrogel is a promising photothermal therapeutic strategy for cancer treatment by enhancing the retention in vivo and elevating the local temperature in tumors.


2007 ◽  
Author(s):  
Jiri Dammer ◽  
Tomas Holy ◽  
Jan Jakubek ◽  
Martin Jakubek ◽  
Stanislav Pospisil ◽  
...  
Keyword(s):  

2016 ◽  
Vol 4 (23) ◽  
pp. 4216-4226 ◽  
Author(s):  
Du Li ◽  
Yongxing Zhang ◽  
Shihui Wen ◽  
Yang Song ◽  
Yueqin Tang ◽  
...  

A theranostic nanoplatform for in vivo CT imaging and enhanced PTT of tumors is reported.


Small ◽  
2018 ◽  
Vol 14 (14) ◽  
pp. 1703789 ◽  
Author(s):  
Zhao-Hua Miao ◽  
Lan-Xiang Lv ◽  
Kai Li ◽  
Pei-Ying Liu ◽  
Zhenglin Li ◽  
...  

2014 ◽  
Vol 25 (3) ◽  
pp. 800-811 ◽  
Author(s):  
C. Vandevoorde ◽  
C. Franck ◽  
K. Bacher ◽  
L. Breysem ◽  
M. H. Smet ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document