scholarly journals Hierarchical porous graphitic carbon for high-performance supercapacitors at high temperature

RSC Advances ◽  
2017 ◽  
Vol 7 (55) ◽  
pp. 34488-34496 ◽  
Author(s):  
Chong Chen ◽  
Dengfeng Yu ◽  
Gongyuan Zhao ◽  
Lei Sun ◽  
Yinyong Sun ◽  
...  

Developing supercapacitors with high energy density without sacrificing the power density and cycle life has attracted enormous attention.

2015 ◽  
Vol 3 (5) ◽  
pp. 1828-1832 ◽  
Author(s):  
Yingjie Wu ◽  
Guohua Gao ◽  
Guangming Wu

A self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogel for high-performance supercapacitor was synthesized.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


2018 ◽  
Vol 6 (19) ◽  
pp. 9109-9115 ◽  
Author(s):  
Xiaoya Chang ◽  
Lei Zang ◽  
Song Liu ◽  
Mengying Wang ◽  
Huinan Guo ◽  
...  

Yolk–shell ZnCo2O4 with in situ formed carbon shows great potential for supercapacitors, which delivers high energy density and power density.


NANO ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. 2050136
Author(s):  
Xuan Zheng ◽  
Xingxing He ◽  
Jinlong Jiang ◽  
Zhengfeng Jia ◽  
Yu Li ◽  
...  

In this paper, the Ni[Formula: see text]Co[Formula: see text]S4@CNTs nanocomposites containing different carbon nanotubes (CNT) content were prepared by a one-step hydrothermal method. More hydroxyl and carboxyl groups were introduced on the surface of CNTs by acidizing treatment to increase the dispersion of CNTs. The acid-treated CNTs can more fully compound with Ni[Formula: see text]Co[Formula: see text]S4 nanoparticles to form heterostructure. When the CNTs content is 10[Formula: see text]wt.%, the Ni[Formula: see text]Co[Formula: see text]S4@CNTs-10 nanocomposite exhibits the highest specific capacity of 210[Formula: see text]mAh[Formula: see text]g[Formula: see text] in KOH aqueous electrolytes at current density of 1[Formula: see text]A[Formula: see text]g[Formula: see text]. The superior performances of the Ni[Formula: see text]Co[Formula: see text]S4@CNTs-10 nanocomposite are attributed to the effective synergic effects of the high specific capacity of Ni[Formula: see text]Co[Formula: see text]S4 and the excellent conductivity of CNTs. An asymmetric supercapacitor (ASC) was assembled based on Ni[Formula: see text]Co[Formula: see text]S4@CNTs-10 positive electrode and activated carbon (AC) negative electrode, which delivers a high energy density of 61.2[Formula: see text]Wh[Formula: see text]kg[Formula: see text] at a power density of 800[Formula: see text]W[Formula: see text]kg[Formula: see text], and maintains 34.8[Formula: see text]Wh[Formula: see text]kg[Formula: see text] at a power density of 16079[Formula: see text]W[Formula: see text]kg[Formula: see text]. Also, the ASC device shows an excellent cycling stability with 91.49% capacity retention and above 94% Columbic efficiency after 10 000 cycles at 10[Formula: see text]A[Formula: see text]g[Formula: see text]. This aqueous asymmetric Ni[Formula: see text]Co[Formula: see text]S4@CNTs//AC supercapacitor is promising for practical applications due to its advantages such as high energy density, power delivery and cycling stability.


2019 ◽  
Vol 7 (29) ◽  
pp. 17435-17445 ◽  
Author(s):  
Muhammad Sufyan Javed ◽  
Hang Lei ◽  
Jinliang Li ◽  
Zilong Wang ◽  
Wenjie Mai

The as-fabricated ZCS//MPC-ASC device delivered the ultrahigh energy density of 92.59 W h kg−1 at the power density of 846.02 W kg−1 with high flexibility.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1467
Author(s):  
Xuanni Lin ◽  
Zhuoyi Yang ◽  
Anru Guo ◽  
Dong Liu

High energy density batteries with high performance are significantly important for intelligent electrical vehicular systems. Iron sulfurs are recognized as one of the most promising anodes for high energy density lithium-ion batteries because of their high theoretical specific capacity and relatively stable electrochemical performance. However, their large-scale commercialized application for lithium-ion batteries are plagued by high-cost and complicated preparation methods. Here, we report a simple and cost-effective method for the scalable synthesis of nanoconfined FeS in porous carbon (defined as FeS@C) as anodes by direct pyrolysis of an iron(III) p-toluenesulfonate precursor. The carbon architecture embedded with FeS nanoparticles provides a rapid electron transport property, and its hierarchical porous structure effectively enhances the ion transport rate, thereby leading to a good electrochemical performance. The resultant FeS@C anodes exhibit high reversible capacity and long cycle life up to 500 cycles at high current density. This work provides a simple strategy for the mass production of FeS@C particles, which represents a critical step forward toward practical applications of iron sulfurs anodes.


RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 9833-9839
Author(s):  
Changzhen Zhan ◽  
Jianan Song ◽  
Xiaolong Ren ◽  
Yang Shen ◽  
Hui Wu ◽  
...  

Constructing flexible hybrid supercapacitors is a feasible way to achieve devices with high energy density, high power density and flexibility at the same time.


2015 ◽  
Vol 3 (43) ◽  
pp. 21553-21561 ◽  
Author(s):  
Baskar Senthilkumar ◽  
Ziyauddin Khan ◽  
Seungyoung Park ◽  
Kyoungho Kim ◽  
Hyunhyub Ko ◽  
...  

A high energy hybrid capacitor fabricated from highly porous graphitic carbon and novel electrode material Ni2P2O7 delivers a maximum energy density of 65 W h kg−1 at a power density of 800 W kg−1, good rate capability and cycling stability in an aqueous Na-ion based electrolyte.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Yudan Yuan ◽  
Yi Sun ◽  
Zhichen Feng ◽  
Xingjian Li ◽  
Ruowei Yi ◽  
...  

A facile and environmentally friendly fabrication is proposed to prepare nitrogen-doped hierarchical porous activated carbon via normal-pressure popping, one-pot activation and nitrogen-doping process. The method adopts paddy as carbon precursor, KHCO3 and dicyandiamide as the safe activating agent and nitrogen dopant. The as-prepared activated carbon presents a large specific surface area of 3025 m2·g−1 resulting from the synergistic effect of KHCO3 and dicyandiamide. As an electrode material, it shows a maximum specific capacitance of 417 F·g−1 at a current density of 1 A·g−1 and very good rate performance. Furthermore, the assembled symmetric supercapacitor presents a large specific capacitance of 314.6 F·g−1 and a high energy density of 15.7 Wh·Kg−1 at 1 A·g−1, maintaining 14.4 Wh·Kg−1 even at 20 A·g−1 with the energy density retention of 91.7%. This research demonstrates that nitrogen-doped hierarchical porous activated carbon derived from paddy has a significant potential for developing a high-performance renewable supercapacitor and provides a new route for economical and large-scale production in supercapacitor application.


2020 ◽  
Author(s):  
Christopher Scott Carley ◽  
Danny J. Espinoza ◽  
José Luis Reyes-Rodríguez ◽  
Ethan C. Ahn

The rapidly increasing demand for renewable energy sources has revived interest in energy storage devices due to the intermittent nature of energy generated from these sources (e.g., solar, wind). Compared to lithium-ion batteries and hydrogen fuel cells, supercapacitors exhibit superior power-density (W/kg), enabling fast charging/discharging cycles. Although supercapacitors generally promise long life-cycle and a robust thermal operating range, a relatively low energy-density (Wh/kg) still remains the greatest challenge. This research presents a relatively simple, low-cost experimental methodology to develop all solid-state, flexible, and high-performance supercapacitor devices. The interdigitated electrodes will consist of two different types of solution-processable carbon nanostructures – namely, reduced graphene oxide (rGO) and single-walled carbon nanotube (SWCNT). We developed models to better guide the experimental work while predicting the power-density and energy-density characteristics of supercapacitors with varying physical dimensions.


Sign in / Sign up

Export Citation Format

Share Document