scholarly journals Effects of nano-grooved gelatin films on neural induction of human adipose-derived stem cells

RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53537-53544 ◽  
Author(s):  
Chen-Yu Tsai ◽  
Chih-Ling Lin ◽  
Nai-Chen Cheng ◽  
Jiashing Yu

The extra cellular matrix (ECM) and cell–cell interactions facilitate the survival, self-renewing and differentiation capabilities of stem cells.

2012 ◽  
Vol 18 (15-16) ◽  
pp. 1729-1740 ◽  
Author(s):  
Daphne L. Hutton ◽  
Elizabeth A. Logsdon ◽  
Erika M. Moore ◽  
Feilim Mac Gabhann ◽  
Jeffrey M. Gimble ◽  
...  

Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


2016 ◽  
Vol 13 (123) ◽  
pp. 20160613 ◽  
Author(s):  
Sebastian V. Hadjiantoniou ◽  
David Sean ◽  
Maxime Ignacio ◽  
Michel Godin ◽  
Gary W. Slater ◽  
...  

During embryogenesis, the spherical inner cell mass (ICM) proliferates in the confined environment of a blastocyst. Embryonic stem cells (ESCs) are derived from the ICM, and mimicking embryogenesis in vitro , mouse ESCs (mESCs) are often cultured in hanging droplets. This promotes the formation of a spheroid as the cells sediment and aggregate owing to increased physical confinement and cell–cell interactions. In contrast, mESCs form two-dimensional monolayers on flat substrates and it remains unclear if the difference in organization is owing to a lack of physical confinement or increased cell–substrate versus cell–cell interactions. Employing microfabricated substrates, we demonstrate that a single geometric degree of physical confinement on a surface can also initiate spherogenesis. Experiment and computation reveal that a balance between cell–cell and cell–substrate interactions finely controls the morphology and organization of mESC aggregates. Physical confinement is thus an important regulatory cue in the three-dimensional organization and morphogenesis of developing cells.


2013 ◽  
Vol 25 (1) ◽  
pp. 289
Author(s):  
K. C. S. Roballo ◽  
A. C. M. Ercolin ◽  
M. Bionaz ◽  
C. E. Ambrosio ◽  
M. B. Wheeler

Stroke, Parkinson’s, Alzheimer’s, and other neurological diseases that are relatively frequent in human involve loss of neurons. The advent of tissue regeneration using stem cells holds great promise in finding cures. In particular, mesenchymal stem cells (MSC) appear to be a very potent source for tissue regeneration. Among MSC subtypes, adipose-derived stem cells (ASC) have several distinct advantages. The ASC are abundant, are easy to isolate and expand in vitro, can be used for heterologous as well autologous transplants, and have multilineage differentiation capacity. In addition to osteocytes, chondrocytes, and adipocytes, the ASC have been successfully differentiated into neuronal-like cells by addition of specific neurogenic factors. However, in vivo differentiation of ASC into neurons remains to be demonstrated. In the present study, we used an in vitro system in order to evaluate whether ASC can be induced towards neurogenic lineages by physical contact with freshly isolated neurons or by factors released by neurons without addition of specific neurogenic factors. Experimentally, ASC and neurons (NEU) were extracted from the back fat or the brain, respectively, of a boar transgenic for green fluorescent protein (GFP) or from wild type pigs. The non-GFP neurons were isolated from the brain of 32-day fetuses or adult pigs. Cells were cultivated in 24-well plates with the following combinations: only ASC or NEU in DMEM (controls), ASC with conditioned medium from NEU, or ASC+NEU. Cells were harvested at 24 h and at 3, 7, 14, and 21 days and fixed with 4% paraformaldehyde in PBS for 15 min for immunohistochemistry analysis. After fixation, neuronal differentiation was evaluated by histological staining with specific neuronal markers. The proportion of ASC that differentiated into neuronal-like cells was determined using fluorescence microscopy. We observed little proliferation of ASC in conditioned medium compared with control ASC; however, a few cells exhibited neuronal-like morphology but with no expression of neuronal markers. When ASC were co-cultured with fetal NEU, starting at 3 days, we observed, using microscope analyses, that 4 to 12% of the ASC had neuronal-like morphology and expressed neuron-associated cell markers. When ASC were co-cultured with neurons from adult brain, we observed a lower fraction (between 1 and 2%) of neuronal differentiated cells starting at 7 days. Our data are preliminary but provide evidence that when ASC are in physical contact with neurons (i.e. by cell-to-cell interactions), they can be induced to differentiate into neuronal-like cells. Further, the differentiation is more rapid and extensive when the ASC are in direct contact with fetal neurons. However, further study is necessary to determine whether these neuronal-like cells are functional neurons. In this regard, we are performing electrophysiological analysis and measurement of expression of neuronal genes. In addition, flow cytometry will be used to quantify the proportion of differentiated ASC.


2015 ◽  
Vol 47 (5) ◽  
pp. 439-455 ◽  
Author(s):  
H. Barreto Henriksson ◽  
N. Papadimitriou ◽  
S. Tschernitz ◽  
E. Svala ◽  
E. Skioldebrand ◽  
...  

2009 ◽  
Vol 20 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Miranda McEwan ◽  
Roger J. Lins ◽  
Sheryl K. Munro ◽  
Zoe L. Vincent ◽  
Anna P. Ponnampalam ◽  
...  

2012 ◽  
Vol 196 (2) ◽  
pp. 117-128 ◽  
Author(s):  
Yuan-Yu Hsueh ◽  
Yi-Lun Chiang ◽  
Chia-Ching Wu ◽  
Sheng-Che Lin

2017 ◽  
Vol 26 (8) ◽  
pp. 1355-1364 ◽  
Author(s):  
Noboru Suzuki ◽  
Nagisa Arimitsu ◽  
Jun Shimizu ◽  
Kenji Takai ◽  
Chieko Hirotsu ◽  
...  

Transplantation of stem cells that differentiate into more mature neural cells brings about functional improvement in preclinical studies of stroke. Previous transplant approaches in the diseased brain utilized injection of the cells in a cell suspension. In addition, neural stem cells were preferentially used for grafting. However, these cells had no specific relationship to the damaged tissue of stroke and brain injury patients. The injection of cells in a suspension destroyed the cell–cell interactions that are suggested to be important for promoting functional integrity of cortical motor neurons. In order to obtain suitable cell types for grafting in patients with stroke and brain damage, a protocol was modified for differentiating human induced pluripotent stem cells from cells phenotypically related to cortical motor neurons. Moreover, cell sheet technology was applied to neural cell transplantation, as maintaining the cell–cell communications is regarded important for the repair of host brain architecture. Accordingly, neuronal cell sheets that were positive Forebrain Embryonic Zinc Finger (Fez) family zinc finger 2 (FEZF2), COUP-TF-interacting protein 2, insulin-like growth factor–binding protein 4 (IGFBP4), cysteine-rich motor neuron 1 protein precursor (CRIM1), and forkhead box p2 (FOXP2) were developed. These markers are associated with cortical motoneurons that are appropriate for the transplant location in the lesions. The sheets allowed preservation of cell–cell interactions shown by synapsin1 staining after transplantation to damaged mouse brains. The sheet transplantation brought about partial structural restoration and the improvement of motor functions in hemiplegic mice. Collectively, the novel neuronal cell sheets were transplanted into damaged motor cortices; the cell sheets maintained cell–cell interactions and improved the motor functions in the hemiplegic model mice. The motoneuron cell sheets are possibly applicable for stroke patients and patients with brain damage by using patient-specific induced pluripotent stem cells.


Sign in / Sign up

Export Citation Format

Share Document