scholarly journals Proton transfer in microbial electrolysis cells

2017 ◽  
Vol 1 (4) ◽  
pp. 725-736 ◽  
Author(s):  
Abhijeet P. Borole ◽  
Alex J. Lewis

Proton transfer in microbial electrochemical cells is as important as electron transfer. This study quantifies proton transfer rates in MEC for the first time. Control of flow rate and loading rate allows improvement in proton transfer rates enabling hydrogen productivities >10 L per L per day.

2020 ◽  
Author(s):  
Shiyu Zhang ◽  
Weiyao Zhang ◽  
Curtis Moore

One-pot reaction of tris(2-aminoethyl)amine (TREN), [CuI (MeCN)4]PF6, and paraformaldehyde affords a mixedvalent [TREN4CuIICuICuI (3-OH)](PF6)3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu3(3-OH)]3+ core. The fourth TREN caps on top of the tricopper cluster to form a cavitand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [TREN4CuIICuICuI (3-OH)](PF6)3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [TREN4CuIICuICuI (3-OH)](PF6)3 and its solvent-exposed analog [TREN3CuIICuIICuII (3-O)](PF6)4 suggest that isolation of tricopper core in a protein-like cavitand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [TREN4CuICuICuI (3- OH)](PF6)2 can reduce O2 under acidic conditions. The geometric constraints provided by the cavitand are reminiscent of Nature’s multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at CuICuICuI (4a), CuIICuICuI (4b), and CuIICuIICuI (4c) state, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (105 - 106 M −1 s −1 ) were observed for both CuICuICuI /CuIICuICuI and CuIICuICuI /CuIICuIICuI redox couples, approaching the rapid electron transfer rates of copper sites in MCO.


2018 ◽  
Vol 4 (11) ◽  
pp. 1839-1850 ◽  
Author(s):  
Wenzong Liu ◽  
Yongjian Piao ◽  
Fugui Zhang ◽  
Lin Liu ◽  
Dongfang Meng ◽  
...  

GeoChips based onmcrAand cytochrome genes to evaluate community structure variety of methanogens and electron transfer process.


2020 ◽  
Author(s):  
Shiyu Zhang ◽  
Weiyao Zhang ◽  
Curtis Moore

One-pot reaction of tris(2-aminoethyl)amine (TREN), [CuI (MeCN)4]PF6, and paraformaldehyde affords a mixedvalent [TREN4CuIICuICuI (3-OH)](PF6)3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu3(3-OH)]3+ core. The fourth TREN caps on top of the tricopper cluster to form a cavitand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [TREN4CuIICuICuI (3-OH)](PF6)3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [TREN4CuIICuICuI (3-OH)](PF6)3 and its solvent-exposed analog [TREN3CuIICuIICuII (3-O)](PF6)4 suggest that isolation of tricopper core in a protein-like cavitand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [TREN4CuICuICuI (3- OH)](PF6)2 can reduce O2 under acidic conditions. The geometric constraints provided by the cavitand are reminiscent of Nature’s multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at CuICuICuI (4a), CuIICuICuI (4b), and CuIICuIICuI (4c) state, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (105 - 106 M −1 s −1 ) were observed for both CuICuICuI /CuIICuICuI and CuIICuICuI /CuIICuIICuI redox couples, approaching the rapid electron transfer rates of copper sites in MCO.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1221
Author(s):  
Domenico Frattini ◽  
Gopalu Karunakaran ◽  
Eun-Bum Cho ◽  
Yongchai Kwon

The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1314
Author(s):  
Mykola Moroz ◽  
Fiseha Tesfaye ◽  
Pavlo Demchenko ◽  
Myroslava Prokhorenko ◽  
Nataliya Yarema ◽  
...  

Equilibrium phase formations below 600 K in the parts Ag2Te–FeTe2–F1.12Te–Ag2Te and Ag8GeTe6–GeTe–FeTe2–AgFeTe2–Ag8GeTe6 of the Fe–Ag–Ge–Te system were established by the electromotive force (EMF) method. The positions of 3- and 4-phase regions relative to the composition of silver were applied to express the potential reactions involving the AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 compounds. The equilibrium synthesis of the set of phases was performed inside positive electrodes (PE) of the electrochemical cells: (−)Graphite ‖LE‖ Fast Ag+ conducting solid-electrolyte ‖R[Ag+]‖PE‖ Graphite(+), where LE is the left (negative) electrode, and R[Ag+] is the buffer region for the diffusion of Ag+ ions into the PE. From the observed results, thermodynamic quantities of AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 were experimentally determined for the first time. The reliability of the division of the Ag2Te–FeTe2–F1.12Te–Ag2Te and Ag8GeTe6–GeTe–FeTe2–AgFeTe2–Ag8GeTe6 phase regions was confirmed by the calculated thermodynamic quantities of AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 in equilibrium with phases in the adjacent phase regions. Particularly, the calculated Gibbs energies of Ag2FeGeTe4 in two different adjacent 4-phase regions are consistent, which also indicates that it has stoichiometric composition.


Sign in / Sign up

Export Citation Format

Share Document