scholarly journals The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag–Fe–Ge–Te System

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1314
Author(s):  
Mykola Moroz ◽  
Fiseha Tesfaye ◽  
Pavlo Demchenko ◽  
Myroslava Prokhorenko ◽  
Nataliya Yarema ◽  
...  

Equilibrium phase formations below 600 K in the parts Ag2Te–FeTe2–F1.12Te–Ag2Te and Ag8GeTe6–GeTe–FeTe2–AgFeTe2–Ag8GeTe6 of the Fe–Ag–Ge–Te system were established by the electromotive force (EMF) method. The positions of 3- and 4-phase regions relative to the composition of silver were applied to express the potential reactions involving the AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 compounds. The equilibrium synthesis of the set of phases was performed inside positive electrodes (PE) of the electrochemical cells: (−)Graphite ‖LE‖ Fast Ag+ conducting solid-electrolyte ‖R[Ag+]‖PE‖ Graphite(+), where LE is the left (negative) electrode, and R[Ag+] is the buffer region for the diffusion of Ag+ ions into the PE. From the observed results, thermodynamic quantities of AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 were experimentally determined for the first time. The reliability of the division of the Ag2Te–FeTe2–F1.12Te–Ag2Te and Ag8GeTe6–GeTe–FeTe2–AgFeTe2–Ag8GeTe6 phase regions was confirmed by the calculated thermodynamic quantities of AgFeTe2, Ag2FeTe2, and Ag2FeGeTe4 in equilibrium with phases in the adjacent phase regions. Particularly, the calculated Gibbs energies of Ag2FeGeTe4 in two different adjacent 4-phase regions are consistent, which also indicates that it has stoichiometric composition.

2017 ◽  
Vol 38 (1) ◽  
pp. 27-38
Author(s):  
M.V. Moroz ◽  
M.V. Prokhorenko ◽  
S.V. Prokhorenko ◽  
O.V. Reshetnyak

Abstract Thermodynamic assessment of the phase stability of the solid solutions of superionic alloys of the Ag3SBr1−xClx (I) system in the concentration range 0 ≤ x ≤ 0.4 and temperature range 370-395 K was performed. Partial functions of silver in the alloys of solid solution were used as the thermodynamic parameters. The values of partial thermodynamic functions were obtained with the use of the electromotive force method. Potential-forming processes were performed in electrochemical cells. Linear dependence of the electromotive force of cells on temperature was used to calculate the partial thermodynamic functions of silver in the alloys. The serpentine-like shape of the thermodynamic functions in the concentration range 0-4 is an evidence of the metastable state of solid solution. The equilibrium phase state of the alloys is predicted to feature the formation of the intermediate phase Ag3SBr0.76Cl0.24, and the solubility gap of the solid solution ranges of Ag3SBr0.76Cl0.24 and Ag3SBr.


Author(s):  
Irshad Mohammad ◽  
Lucie Blondeau ◽  
Eddy Foy ◽  
Jocelyne Leroy ◽  
Eric Leroy ◽  
...  

Following the trends of alloys as negative electrodes for Na-ion batteries, the sodiation of the InSb intermetallic compound was investigated for the first time. The benefit of coupling Sb with...


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1230
Author(s):  
Jessica Manzi ◽  
Annalisa Paolone ◽  
Oriele Palumbo ◽  
Domenico Corona ◽  
Arianna Massaro ◽  
...  

In this manuscript, we report a detailed physico-chemical comparison between the α- and β-polymorphs of the NaMnO2 compound, a promising material for application in positive electrodes for secondary aprotic sodium batteries. In particular, the structure and vibrational properties, as well as electrochemical performance in sodium batteries, are compared to highlight differences and similarities. We exploit both laboratory techniques (Raman spectroscopy, electrochemical methods) and synchrotron radiation experiments (Fast-Fourier Transform Infrared spectroscopy, and X-ray diffraction). Notably the vibrational spectra of these phases are here reported for the first time in the literature as well as the detailed structural analysis from diffraction data. DFT+U calculations predict both phases to have similar electronic features, with structural parameters consistent with the experimental counterparts. The experimental evidence of antisite defects in the beta-phase between sodium and manganese ions is noticeable. Both polymorphs have been also tested in aprotic batteries by comparing the impact of different liquid electrolytes on the ability to de-intercalated/intercalate sodium ions. Overall, the monoclinic α-NaMnO2 shows larger reversible capacity exceeding 175 mAhg−1 at 10 mAg−1.


2020 ◽  
pp. 1-12
Author(s):  
Fatemeh Tavakoli ◽  
Javad Salimi Sartakhti ◽  
Mohammad Hossein Manshaei ◽  
David Basanta

The role of the immune system in tumor development increasingly includes the idea of cancer immunoediting. It comprises three phases: elimination, equilibrium, and escape. In the first phase, elimination, transformed cells are recognized and destroyed by immune system. The rare tumor cells that are not destroyed in this phase may then enter the equilibrium phase, where their growth is prevented by immunity mechanisms. The escape phase represents the final phase of this process, where cancer cells begin to grow unconstrained by the immune system. In this study, we describe and analyze an evolutionary game theoretical model of proliferating, quiescent, and immune cells interactions for the first time. The proposed model is evaluated with constant and dynamic approaches. Population dynamics and interactions between the immune system and cancer cells are investigated. Stability of equilibria or critical points are analyzed by applying algebraic analysis. This model allows us to understand the process of cancer development and might help us design better treatment strategies to account for immunoediting.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 593
Author(s):  
Fiseha Tesfaye ◽  
Daniel Lindberg ◽  
Dmitry Sukhomlinov ◽  
Pekka Taskinen ◽  
Leena Hupa

Thermal stabilities of selected ternary phases of industrial interest in the Ag-Cu-S system have been studied by the calorimetric and electromotive force techniques. The ternary compounds Ag1.2Cu0.8S (mineral mackinstryite) and AgCuS (mineral stromeyerite) were equilibrated through high-temperature reaction of the pure Cu2S and Ag2S in an inert atmosphere. The synthesized single solid sample constituting the two ternary phases was ground into fine powders and lightly pressed into pellets before calorimetric measurements. An electrochemical cell incorporating the two equilibrated phase and additional CuS as a cathode material was employed. The measurement results obtained with both techniques were analyzed and thermodynamic properties in the system have been determined and compared with the available literature values. Enthalpy of fusion data of the Ag-richer solid solution (Ag,Cu)2S have also been determined directly from the experimental data for the first time. The thermodynamic quantities determined in this work can be used to calculate thermal energy of processes involving the Ag-Cu-S-ternary phases. By applying the obtained results and the critically evaluated literature data, we have developed a thermodynamic database. The self-developed database was combined with the latest pure substances database of the FactSage software package to model the phase diagram of the Ag2S-Cu2S system.


1978 ◽  
Vol 56 (19) ◽  
pp. 2550-2551 ◽  
Author(s):  
Alan N. Campbell

Amalgams containing up to 60 wt.% indium are liquid and homogeneous at room temperature. The emf's of liquid amalgams containing from 10 to 50 wt.% of indium in the cell In/InCl3/amalgam have been determined and from these the quantities ΔG, ΔH, and ΔS for the process In + Hg → amalgam.


2013 ◽  
Vol 544 ◽  
pp. 368-371
Author(s):  
Qi Wang ◽  
Wei Hua Hou ◽  
Tao Feng ◽  
Dan Yu Jiang

ZnFe2O4 powders are synthesized by solid phase method and used to make sensing electrode. Electrochemical cells are prepared with an oxygen ionic conductor (Y2O3-stabilized ZrO2: YSZ) with a semiconducting oxide (ZnFe2O4) electrode. Pt is used as the counter electrode. The devices shows promising NO2 sensing performance at 450, 550 and 650oC.The electromotive force (EMF) value of the ZnFe2O4/YSZ/Pt sensor increases with the increasing of concentrations of NO2 in N2.


2001 ◽  
Vol 664 ◽  
Author(s):  
Kianoush Naeli ◽  
Shamsoddin Mohajerzadeh ◽  
Ali Khakifirooz ◽  
Saber Haji ◽  
Ebrahim A. Soleimani

ABSTRACTThe effect of an electric field on germanium-seeded lateral crystallization of a-Si is studied for the first time and compared to this effect in Ni-induced lateral growth. While the crystallization rate is lower when Ge is used as the nucleation seed and annealing should be done at higher temperatures, filed-aided crystallization shows a similar behavior to that observed for Ni-induced crystallization. Optical microscopy results indicate that grain growth starting from the negative electrode occurs in Si films at annealing temperatures higher than 480°C, while the applied electric field ranges form 200 to 1400V/cm. SEM was also used to confirm the crystallinity of the films.


2014 ◽  
Vol 794-796 ◽  
pp. 992-995
Author(s):  
Akihiro Kawai ◽  
Keisuke Matsuura ◽  
Katsumi Watanabe ◽  
Kenji Matsuda ◽  
Susumu Ikeno

It is known that Al-Mg-Ge alloys show a similar precipitation sequence to that of Al-Mg-Si alloys, and that ther equilibrium phase is β-Mg2Ge according to the phase diagram. In this study, the precipitation sequence and age-hardening behavior of Al-1.0mass%Mg2Ge alloys has been investigated by hardness test, write out in full first time used TEM and HRTEM observations on.The hardness curves showed no big difference between peak values hardness for samples aged at 423, 473 and 523K. The precipitates in the peak-aged samples have been classified as some metastable phases, such as the β’-phase and parallelogram-type precipitates by HRTEM observation. The large precipitates are similar to the A-type precipitate in the Al-Mg-Si alloy with excess Si.


Sign in / Sign up

Export Citation Format

Share Document