scholarly journals The role of chemical structure in indacenodithienothiophene-alt-benzothiadiazole copolymers for high performance organic solar cells with improved photo-stability through minimization of burn-in loss

2017 ◽  
Vol 5 (47) ◽  
pp. 25064-25076 ◽  
Author(s):  
Christos L. Chochos ◽  
Nicolas Leclerc ◽  
Nicola Gasparini ◽  
Nicolas Zimmerman ◽  
Elisavet Tatsi ◽  
...  

The organic solar cell initial burn-in loss is suppressed via the rational design of the polymer's chemical structure.

Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16305-16312 ◽  
Author(s):  
Seokhyun Yoon ◽  
Si Joon Kim ◽  
Harrison S. Kim ◽  
Joon-Suh Park ◽  
Il Ki Han ◽  
...  

Pin-hole free and conductive In2O3 electron transporting layers lead to a power conversion efficiency of 14.63% in a perovskite solar cell and 3.03% in an organic solar cell.


2017 ◽  
Vol 10 (4) ◽  
pp. 885-892 ◽  
Author(s):  
Nicola Gasparini ◽  
Luca Lucera ◽  
Michael Salvador ◽  
Mario Prosa ◽  
George D. Spyropoulos ◽  
...  

We present a novel ternary organic solar cell with an uncommonly thick active layer (∼300 nm), featuring thickness invariant charge carrier recombination and delivering 11% power conversion efficiency (PCE).


2019 ◽  
Author(s):  
Matthew Morgan ◽  
Maryam Nazari ◽  
Thomas Pickl ◽  
J. Mikko Rautiainen ◽  
Heikki M. Tuononen ◽  
...  

The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron-nitrogen doped dihydroindeno[1,2-<i>b</i>]fluorene which can be synthesized via mildly air-sensitive techniques and the end products handled readily under atmosphereic conditions. Through transmetallation via diarylzinc reagents a series of derivatives were sythesized which show broad absorption profiles that highlight the versatility of this backbone to be used in organic solar cell devices. These compounds can be synthesized in large yields, in alow number of steps and functionalized at many stages along the way providing a large depth of possibilities. Exploratory device paramaters were studied and show PCE of 2%.


Author(s):  
Jie Lv ◽  
Hua Tang ◽  
Jiaming Huang ◽  
Cenqi Yan ◽  
Kuan Liu ◽  
...  

Due to the barrierless free charge generation, low charge trapping, and high charge mobilities, the PM6:Y6 organic solar cell (OSC) achieves excellent power conversion efficiency (PCE) of 15.7%. However, the...


Author(s):  
Venkatesh Piradi ◽  
Feng Yan ◽  
Xunjin Zhu ◽  
Wai-Yeung Raymond Wong

Organic solar cells (OSCs) have been considered as a promising cost-effective alternative to silicon-based solar cell counterparts due to their lightweight, mechanical flexibility, and easy fabrication features. Over the past...


2015 ◽  
Vol 12 (5) ◽  
pp. 413-420
Author(s):  
Muhammad Ahsan Naveed ◽  
A. Hussain ◽  
K. Islam ◽  
P. Akhter

Organic solar cells have potential as an alternative to conventional inorganic solar cell due to low processing cost, flexibility and easy fabrication technique. The goal of this paper is to study the characteristics of the CuPc and PCBM based organic solar cell by introducing a thin layer of Ag at the interface of donor (CuPc) and Acceptor (PCBM), their photovoltaic and optical properties were investigated. The heterojunction solar cells with and without silver inter layer were fabricated through thermal deposition in HR vacuum. The OPV solar cells were characterized using current-voltage graphs, absorbance spectrum and Impedance spectroscopy. Impedance spectroscopy was taken to identify the traps using series resistance, parallel resistance, and Impedance spectrums under different frequencies. Optical behaviors of these devices have been investigated with absorbance spectrum. Introducing Ag to interfacing point produced traps and these traps causes to decreased Voc, Isc, FF, and efficiency. The effect of silver layer at donor acceptor interface was studied.


2015 ◽  
Vol 8 (2) ◽  
pp. 592-601 ◽  
Author(s):  
Bradley A. MacLeod ◽  
Bertrand J. Tremolet de Villers ◽  
Philip Schulz ◽  
Paul F. Ndione ◽  
Hyungchul Kim ◽  
...  

Interstitial zinc defects in solution-processed ZnO can be mitigated by using a diethylzinc precursor instead of zinc acetate, or by modifying the ZnO surface with a phosphonic acid, resulting in improved organic solar cell stability.


Author(s):  
Minas M. Stylianakis ◽  
Dimitriοs M. Kosmidis ◽  
Katerina Anagnostou ◽  
Christos Polyzoidis ◽  
Miron Krassas ◽  
...  

A novel solution-processed graphene-based material was synthesized by treating graphene oxide (GO) with 2,5,7-trinitro-9-oxo-fluorenone-4-carboxylic acid (TNF-COOH) moieties, via simple synthetic routes. The yielded molecule N-[(carbamoyl-GO)ethyl]-N&rsquo;-[(carbamoyl)-(2,5,7-trinitro-9-oxo-fluorene)] (GO-TNF) was thoroughly characterized and it was shown that it presents favorable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels to function as a bridge component between the polymeric donor poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b&prime;]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) (PTB7) and the fullerene derivative acceptor [6,6]-phenyl-C71-butyric-acid-methylester (PC71BM). In this context, a GO-TNF based ink was prepared and directly incorporated within the binary photoactive layer, in different volume ratios (1-3% ratio to the blend), for the effective realization of inverted ternary organic solar cells (OSCs) of the structure ITO/PFN/PTB7:GO-TNF:PC71BM/MoO3/Al. The addition of 2% v/v GO-TNF ink led to a champion power conversion efficiency (PCE) of 8.71% that was enhanced by ~13% as compared to the reference cell.


Sign in / Sign up

Export Citation Format

Share Document