Three-dimensional depth profiling of prostate tissue by micro ATR-FTIR spectroscopic imaging with variable angles of incidence

The Analyst ◽  
2019 ◽  
Vol 144 (9) ◽  
pp. 2954-2964 ◽  
Author(s):  
Cai Li Song ◽  
Sergei G. Kazarian

Variable angle micro ATR-FTIR, via the insertion of circular apertures, was used to measure tissue samples at various penetration depths.

Author(s):  
J.N. Turner ◽  
M. Siemens ◽  
D. Szarowski ◽  
D.N. Collins

A classic preparation of central nervous system tissue (CNS) is the Golgi procedure popularized by Cajal. The method is partially specific as only a few cells are impregnated with silver chromate usualy after osmium post fixation. Samples are observable by light (LM) or electron microscopy (EM). However, the impregnation is often so dense that structures are masked in EM, and the osmium background may be undesirable in LM. Gold toning is used for a subtle but high contrast EM preparation, and osmium can be omitted for LM. We are investigating these preparations as part of a study to develop correlative LM and EM (particularly HVEM) methodologies in neurobiology. Confocal light microscopy is particularly useful as the impregnated cells have extensive three-dimensional structure in tissue samples from one to several hundred micrometers thick. Boyde has observed similar preparations in the tandem scanning reflected light microscope (TSRLM).


Author(s):  
Daniel Beniac ◽  
George Harauz

The structures of E. coli ribosomes have been extensively probed by electron microscopy of negatively stained and frozen hydrated preparations. Coupled with quantitative image analysis and three dimensional reconstruction, such approaches are worthwhile in defining size, shape, and quaternary organisation. The important question of how the nucleic acid and protein components are arranged with respect to each other remains difficult to answer, however. A microscopical technique that has been proposed to answer this query is electron spectroscopic imaging (ESI), in which scattered electrons with energy losses characteristic of inner shell ionisations are used to form specific elemental maps. Here, we report the use of image sorting and averaging techniques to determine the extent to which a phosphorus map of isolated ribosomal subunits can define the ribosomal RNA (rRNA) distribution within them.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christoph Mark ◽  
Thomas J Grundy ◽  
Pamela L Strissel ◽  
David Böhringer ◽  
Nadine Grummel ◽  
...  

We describe a method for quantifying the contractile forces that tumor spheroids collectively exert on highly nonlinear three-dimensional collagen networks. While three-dimensional traction force microscopy for single cells in a nonlinear matrix is computationally complex due to the variable cell shape, here we exploit the spherical symmetry of tumor spheroids to derive a scale-invariant relationship between spheroid contractility and the surrounding matrix deformations. This relationship allows us to directly translate the magnitude of matrix deformations to the total contractility of arbitrarily sized spheroids. We show that our method is accurate up to strains of 50% and remains valid even for irregularly shaped tissue samples when considering only the deformations in the far field. Finally, we demonstrate that collective forces of tumor spheroids reflect the contractility of individual cells for up to 1 hr after seeding, while collective forces on longer timescales are guided by mechanical feedback from the extracellular matrix.


2021 ◽  
Author(s):  
Shojiro Katoh ◽  
Hiroshi Yoshioka ◽  
Shoji Suzuki ◽  
Hiroyuki Nakajima ◽  
Masaru Iwasaki ◽  
...  

Chondrocytes are used in cell-based therapies such as autologous chondrocyte implantation (ACI) and matrix-associated cartilage implantation (MACI). To transport the cartilage tissue to the laboratory for in vitro culturing, phosphate-buffered saline (PBS), Euro-Collins solution (ECS) and Dulbecco Modified Eagle Medium (DMEM) are commonly employed at 4-8 deg C. In this study, eight samples of human cartilage biopsy tissues from elderly patients with severe osteoarthritis undergoing arthroscopy, which would otherwise have been discarded, were used. The cartilage tissue samples were compared to assess the cell yield between two transportation groups: i) a thermo-reversible gelation polymer (TGP) based method without cool preservation (~25 deg C) and ii) ECS transport at 4 deg C. These samples were subjected to in vitro culture in a two-dimensional (2D) monolayer for two weeks and subsequently in a three-dimensional (3D) TGP scaffold for six weeks. The cell count obtained from the tissues transported in TGP was higher (0.2 million cells) than those transported in ECS (0.08 million cells) both after initial processing and after in vitro culturing for 2 weeks in 2D (18 million cells compared with 10 million cells). In addition, mRNA quantification demonstrated significantly higher expression of Col2a1 and SOX-9 in 3D-TGP cultured cells and lower expression of COL1a1 in RT-PCR, characteristic of the hyaline cartilage phenotype, than in 2D culture. This study confirms that the TGP cocktail is suitable for both the transport of human cartilage tissue and for in vitro culturing to yield better-quality cells for use in regenerative therapies.


Author(s):  
Anilchandra Attaluri ◽  
Navid Manuchehrabadi ◽  
Anna Dechaumphai ◽  
Ronghui Ma ◽  
Liang Zhu

Recently, two nanotechnologies have emerged as promising hyperthermia therapies due to their ability to confine adequate thermal energy in tumors. Both overcome the limitations of traditional hyperthermia approaches such as microwave and ultrasound, which have short penetration depths into tissue and often cause collateral thermal damage to the superficial tissue layers. One uses magnetic nanoparticles to generate heat when the nanoparticles are subject to an alternating magnetic field [1–2]. The other one uses gold nanoshells or nanorods in laser induced photothermal therapy [3–4]. By varying the geometric ratio, the nanostructures can be tuned to have strong absorption and scattering to a specific laser wavelength. The enhancement in laser energy absorption would confine the laser energy in a tumor area congregating by the nanostructure. The efficacy of these two methods relies on the achieved tumor temperature elevations which are largely determined by the nanostructure concentration distribution in the tumor. Therefore, having an imaging technique to directly visualize and analyze the three-dimensional nanostructure distribution in tumors would greatly improve treatment protocols to kill all tumor cells while avoiding overheating in the surrounding healthy tissue.


2020 ◽  
Vol 45 (11) ◽  
pp. 1851-1859
Author(s):  
Juan R. Bustillo ◽  
Joel Upston ◽  
Elizabeth Grace Mayer ◽  
Thomas Jones ◽  
Andrew A. Maudsley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document