Temperature-induced structural transition of ceria by bulk reduction under hydrogen atmosphere

CrystEngComm ◽  
2018 ◽  
Vol 20 (31) ◽  
pp. 4359-4363 ◽  
Author(s):  
Takeshi Matsukawa ◽  
Akinori Hoshikawa ◽  
Toru Ishigaki

Ceria (CeO2) was kinetically reduced in hydrogen depending on the isothermal holding time at high temperature.

2006 ◽  
Vol 527-529 ◽  
pp. 999-1002
Author(s):  
Junji Senzaki ◽  
Atsushi Shimozato ◽  
Kenji Fukuda

Low-temperature post-oxidation annealing (POA) process of high-reliability thermal oxides grown on 4H-SiC using new apparatus that generates atomic hydrogen radicals by high-temperature catalyzer has been investigated. Atomic hydrogen radicals were generated by thermal decomposition of H2 gas at the catalyzer surface heated at high temperature of 1800°C, and then exposed to the sample at 500°C in reactor pressure of 20 Pa. The mode and maximum values of field-to-breakdown are 11.0 and 11.2 MV/cm, respectively, for the atomic hydrogen radical exposed sample. In addition, the charge-to-breakdown at 63% cumulative failure of the thermal oxides for atomic hydrogen radical exposed sample was 0.51 C/cm2, which was higher than that annealed at 800°C in hydrogen atmosphere (0.39 C/cm2). Consequently, the atomic hydrogen radical exposure at 500°C has remarkably improved the reliability of thermal oxides on 4H-SiC wafer, and is the same effect with high-temperature hydrogen POA at 800°C.


2006 ◽  
Vol 70 (6) ◽  
pp. 467-472 ◽  
Author(s):  
Tomonori Nambu ◽  
Nobue Shimizu ◽  
Hisakazu Ezaki ◽  
Hiroshi Yukawa ◽  
Masahiko Morinaga ◽  
...  

2014 ◽  
Vol 953-954 ◽  
pp. 1035-1039
Author(s):  
Li Qun Wang ◽  
Zhong Bo Yi ◽  
Zhong Xiang Wei

Aimed at improving the utilization of pulverized coal, high-temperature heat pipe technology was introduced into lignite carbonization.Under the design of power of 10kw semi-industrial pulverized coal carbonization test equipment, Fugu lignite coal as raw material to investigate the operating characteristics of the device and carbonization characteristics. Experimental result shows that the high temperature heat pipes heat steadily and meet the temperature requirement of low-temperature carbonization. With the extension of the holding time, the semi-coke fixed carbon content increasing, but volatile matter vice versa, however, holding time above 60 minutes, the effect of carbonization is not obvious, and the best carbonization time is 30 ~ 60 minutes. The length of the holding time has little effect on gas composition, the content of H2 and CH4 are relatively higher than the rest gas, (H2 + CH4) gas accounted for 70% of the total, the heating value remains at 18.76 ~ 19.22MJ/m3, belongs to medium-high value gas, could provide for industrial and civilian use.


2007 ◽  
Vol 25 (5-6) ◽  
pp. 374-379 ◽  
Author(s):  
J.K.M.F. Daguano ◽  
C. Santos ◽  
R.C. Souza ◽  
R.M. Balestra ◽  
K. Strecker ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Donggen Huang ◽  
Tianzi Yang ◽  
Zhuanghong Mo ◽  
Qin Guo ◽  
Shuiqing Quan ◽  
...  

The graphene (GR) was prepared by an improved electrochemical stripping method using a high-purity graphite rod as raw material and high temperature heat reduction in hydrogen atmosphere, and the graphene/TiO2(GR/TiO2) composite nanomaterials were manufactured by the method of sol-gel and high temperature crystallization in hydrogen atmosphere using butyl titanate and electrolysis graphene as precursors. The physical and chemical properties of the composites had been characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer (UV-Vis), scanning electron microscopy (SEM), Transmission Electron Microscope (TEM),  and specific surface area (SSA) by BET method. The photocatalytic properties of GR/TiO2composites nanomaterials in anoxic water were studied by using 2,4-dichlorophenoxyacetic acid (2,4-D) as probe. The results showed that graphite was well intercalated and peeled by a facile electrolysis method in different electric field environment; a well dispersed and rings structure of graphene was prepared by coupling ultrasound-assisted changing voltage electrochemical stripping technology. The as-prepared GR/TiO2composites had good performance for the photocatalytic degradation of 2,4-D in anoxic water; the chlorines were removed from benzene ring; the middle products of dichlorophenol, chlorophenol, phloroglucinol, and so forth were produced from the photocatalytic redox reaction of 2,4-D in anoxic water; parts of 2,4-D were decomposed completely, and CO2and H2O were produced.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 367 ◽  
Author(s):  
Laura Sáez ◽  
Eoin Murphy ◽  
Richard J. FitzGerald ◽  
Phil Kelly

Tryptic hydrolysis of whey protein isolate under specific incubation conditions including a relatively high enzyme:substrate (E:S) ratio of 1:10 is known to preferentially hydrolyse β-lactoglobulin (β-LG), while retaining the other major whey protein fraction, i.e., α-lactalbumin (α-LA) mainly intact. An objective of the present work was to explore the effects of reducing E:S (1:10, 1:30, 1:50, 1:100) on the selective hydrolysis of β-LG by trypsin at pH 8.5 and 25 °C in a 5% (w/v) WPI solution during incubation periods ranging from 1 to 7 h. In addition, the use of a pilot-scale continuous high-temperature, short-time (HTST) heat exchanger with an extended holding time (EHT) of 5 min as a means of inactivating trypsin to terminate hydrolysis was compared with laboratory-based acidification to <pH 3 by the addition of HCl, and batch sample heating in a water bath at 85 °C. An E:S of 1:10 resulted in 100% and 30% of β-LG and α-LA hydrolysis, respectively, after 3 h, while an E:S reduction to 1:30 and 1:50 led >90% β-LG hydrolysis after respective incubation periods of 4 and 6 h, with <5% hydrolysis of α-LA in the case of 1:50. Continuous HTST-EHT treatment was shown to be an effective inactivation process allowing for the maintenance of substrate selectivity. However, HTST-EHT heating resulted in protein aggregation, which negatively impacts the downstream recovery of intact α-LA. An optimum E:S was determined to be 1:50, with an incubation time ranging from 3 h to 7 h leading to 90% β-LG hydrolysis and minimal degradation of α-LA. Alternative batch heating by means of a water bath to inactivate trypsin caused considerable digestion of α-LA, while acidification to <pH 3.0 restricted subsequent functional applications of the protein.


2020 ◽  
Vol 63 (1) ◽  
pp. 21-25
Author(s):  
S. G. Stakheev ◽  
A. Ya. Eremin ◽  
E. G. Zolotareva

2020 ◽  
Vol 34 (33) ◽  
pp. 2050385
Author(s):  
Ye Wang ◽  
Maoliang Hu ◽  
Hongyu Xu ◽  
Zesheng Ji ◽  
Xuefeng Wen ◽  
...  

A typical Al–Cu–Mn–Ti aluminum alloy chip was adopted to prepare semi-solid billets by a Strain-Induced Melt Activation (SIMA) method, and the effects of isothermal process parameters on the semi-solid microstructure evolution of the alloy were investigated in this work. The result showed that semi-solid billets with highly spheroidal and homogeneous fine grains could be prepared from chips by the SIMA method. With the increase of isothermal temperature, the finer and near-spherical grains are obtained, the grains coarsen and became ellipse at 903 K because of the coarsening mechanisms of coalescence and Ostwald ripening. The relationship of isothermal holding time and grains size followed the LSW theory well, and more spherical microstructure can be brought by prolonging the holding time until 3000 s. Thus, the optimal isothermal treatment temperature is 893 K and holding time is 3000 s, the corresponding average size and roundness of grains are 137 [Formula: see text]m and 1.108, respectively.


2010 ◽  
Vol 307 ◽  
pp. 13-19
Author(s):  
Deepika Sharma ◽  
Kamlesh Chandra ◽  
Prabhu Shankar Misra

Iron-Phosphorus based soft magnetic materials are known for their hot and cold shortness. The present investigation deals with the development of high-density Fe-P based alloys in the form of very thin sheets (0.1mm) by proper soaking of them at a high temperature so as to eliminate Iron-Phosphide eutectic and bring the phosphorus entirely into solution in the iron. It has also been possible to eliminate the use of a hydrogen atmosphere during sintering by using carbon to form CO gas within the compact by reaction with the oxygen of the iron powder particles. A glassy ceramic coating applied over the compact serves as a protective coating in order to avoid atmospheric oxygen attack over the compact held at high temperature. The Fe-0.3wt% P- 0.4wt% Si alloy so formed yielded coercivities as low as 0.42 Oe, resistivities as high as 28.4 µΩcm and total losses as low as 0.132 W/Kg. Such a combination of properties may make the alloy suitable for application in magnetic relays and transformer cores.


Sign in / Sign up

Export Citation Format

Share Document