scholarly journals Antisite-disorder engineering in La-based oxide heterostructures via oxygen vacancy control

2018 ◽  
Vol 20 (26) ◽  
pp. 17871-17880 ◽  
Author(s):  
Urmimala Dey ◽  
Swastika Chatterjee ◽  
A. Taraphder

It has been realized lately that disorder, primarily in the form of oxygen vacancies, cation stoichiometry, atomic inter-diffusion and antisite defects, has a major effect on the electronic and transport properties of a 2D electron liquid at oxide hetero-interfaces – the first and the last being the two key players.

2021 ◽  
Author(s):  
Komal N. Patil ◽  
Divya Prasad ◽  
Jayesh T. Bhanushali ◽  
Bhalchandra Kakade ◽  
Arvind H. Jadhav ◽  
...  

Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde is captivating due to its industrial relevance. Herein, two-step synthesis method was adopted to develop oxygen vacancies in Pd@ZrO2 catalysts. The oxygen vacancies were...


2020 ◽  
Vol 7 (16) ◽  
pp. 2969-2978
Author(s):  
Jie-hao Li ◽  
Jie Ren ◽  
Ying Liu ◽  
Hui-ying Mu ◽  
Rui-hong Liu ◽  
...  

Cl-Doped Bi2O2CO3 is prepared using ionic liquids as dopants and the oxygen-vacancy-induced photocatalytic mechanism is revealed.


2019 ◽  
Vol 7 (12) ◽  
pp. 6730-6739 ◽  
Author(s):  
Jinxiang Diao ◽  
Wenyu Yuan ◽  
Yu Qiu ◽  
Laifei Cheng ◽  
Xiaohui Guo

Hierarchical vertical WO3 nanowire arrays on vertical WO3 nanosheet arrays with rich oxygen vacancies were synthesized via a simple and facile method, and the outstanding OER performance which is superior to that of most reported state-of-the-art catalysts was reported for the first time.


Author(s):  
Jin-Tao Ren ◽  
Zhong-Yong Yuan

In situ-formed nickel/nickel oxide heterostructures coupled with N-doped graphitic carbon significantly promote the hydrogen oxidation and oxygen reduction reactions in alkaline water.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Chang Sun ◽  
Zitong Zhao ◽  
Hougang Fan ◽  
Yanli Chen ◽  
Xiaoyan Liu ◽  
...  

As the concentration of the W dopant increased in the Bi2Mo1−xWxO6 nanosheets, the density of the oxygen vacancies became higher, which served as electron trap centers to lower the recombination rate and enhance the photocatalytic performance.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Byeong-Eon Lee ◽  
Dae-Hee Kim ◽  
Yeong-Cheol Kim

AbstractWe studied oxygen migration in calcia-stabilized cubic zirconia (CSZ) using density functional theory. A Ca atom was substituted for a Zr atom in a 2×2×2 ZrO2 cubic supercell, and an oxygen vacancy was produced to satisfy the charge neutrality condition. We found that the formation energies of an oxygen vacancy, as a function of its location with respect to the Ca atom, were varied. The relative formation energies of the oxygen vacancies located at the first-, second-, third-, and fourth-nearest-neighbors were 0.0, −0.07, 0.19, and 0.19 eV, respectively. Therefore, the oxygen vacancy located at the second-nearest-neighbor site of the Ca atom was the most favorable, the oxygen vacancy located at the first-nearest-neighbor site was the second most favorable, and the oxygen vacancies at the third- and fourth-nearest-neighbor sites were the least favorable. We also calculated the energy barriers for the oxygen vacancy migration between oxygen sites. The energy barriers between the first and the second nearest sites, the second and third nearest sites, and the third and fourth nearest sites were 0.11, 0.46, and 0.23 eV, respectively. Therefore, the oxygen vacancies favored the first- and second-nearest-neighbor oxygen sites when they drifted under an electric field.


2011 ◽  
Vol 485 ◽  
pp. 15-18 ◽  
Author(s):  
Youn Kyu Choi ◽  
Takuya Hoshina ◽  
Hiroaki Takeda ◽  
Jong Min Oh ◽  
Takaaki Tsurumi

The effect of oxygen vacancies and their migrations on the dielectric responses of BaTiO3 (BT) ceramics and (Ba, Ca)(Ti, Zr)O3 (BCTZ) ceramics was studied using wideband dielectric spectroscopy. Both dipole and ionic polarization of BT ceramics after annealing in a reducing atmosphere markedly decreased. To elucidate the decrease of dipole and ionic polarization, we observed the domain width and the crystal structure of BT ceramics annealed in different PO2. The mass fractions of constituted phases in 90o domain were calculated using the refinement of XRD patterns to explain the degradation of ionic polarization by oxygen vacancies. From the results above, we judged that the decrease of dipole polarization was due to the domain wall clamping by oxygen vacancies, while that of ionic polarization was attributable to the lattice hardening by the incorporation of oxygen vacancies into the BT lattice. In the case of BCTZ ceramics, dipole polarization showed the same way as BT ceramics with annealing conditions but the ionic polarization was independent of PO2 in annealing because of anti-reducing behavior of BCTZ ceramics. On the basis of the effect of oxygen vacancy in BT ceramics and BCTZ ceramics, we could clarify the oxygen vacancy migration in BCTZ ceramics under high direct-current voltage (DCV).


Sign in / Sign up

Export Citation Format

Share Document