The role of nitric acid in atmospheric new particle formation

2018 ◽  
Vol 20 (25) ◽  
pp. 17406-17414 ◽  
Author(s):  
Ling Liu ◽  
Hao Li ◽  
Haijie Zhang ◽  
Jie Zhong ◽  
Yang Bai ◽  
...  

The cluster formation mechanism indicates that nitric acid can connect the smaller and larger clusters, enhancing sulfuric acid–ammonia cluster formation rates.

2021 ◽  
Vol 48 (7) ◽  
Author(s):  
Chao Yan ◽  
Rujing Yin ◽  
Yiqun Lu ◽  
Lubna Dada ◽  
Dongsen Yang ◽  
...  

2020 ◽  
Author(s):  
Vitus Besel ◽  
Jakub Kubečka ◽  
Theo Kurtén ◽  
Hanna Vehkamäki

<div> <p>The bulk of aerosol particles in the atmosphere are formed by gas-to-particle nucleation (Merikanto et al., 2009). However, the exact process of single molecules forming cluster, which subsequently can grow into particles, remains largely unknown. Recently, sulfuric acid has been identified to play a key role in this new particle formation enhanced by other compounds such as organic acids (Zhang, 2010) or ammonia (Anttila et al., 2005). To identify the characteristics of cluster formation and nucleation involving sulfuric acid and ammonia in neutral, positive and negative modes, we conducted a computational study. We used a layered approach for configurational sampling of the molecular clusters starting from utilizing a genetic algorithm in order to explore the whole potential energy surface (PES) with all plausible geometrical minima, however, with very unreliable energies. The structures were further optimized with a semi-empirical method and, then, at the ωB97X-D DFT level of theory. After each step, the optimized geometries were filtered to obtain the global minimum configuration. Further, a high level of theory (DLPNO-CCSD(T)) was used for obtaining the electronic energies, in addition to performing DFT frequency analysis, to calculate the Gibbs free energies of formation. These were passed to the Atmospheric Cluster Dynamics Code (ACDC) (McGrath et al., 2012) for studying the evolution of cluster populations. We determined the global minima for the following sulfuric acid - ammonia clusters: (H<sub>2</sub>SO<sub>4</sub>)<sub>m</sub>(NH<sub>3</sub>)<sub>n</sub> with m=n, m=n+1 and n=m+1 for neutral clusters, (H<sub>2</sub>SO<sub>4</sub>)<sub>m</sub>(HSO<sub>4</sub>)<sup>−</sup>(NH<sub>3</sub>)<sub>n</sub> with m=n and n=m+1 for positively charged clusters, and (H<sub>2</sub>SO<sub>4</sub>)<sub>m</sub>(NH<sub>4</sub>)<sup>+</sup>(NH<sub>3</sub>)<sub>n</sub> with m=n and m=n+1 for negatively charged clusters. Further, we present the formation rates, steady state concentrations and fluxes of these clusters calculated using ACDC and discuss how a new configurational sampling procedure, more precise quantum chemistry methods and parameters, such as symmetry and a quasiharmonic approach, impact these ACDC results in comparison to previous studies.</p> </div><div> <p><em>References:<br></em><em>J. Merikanto, D. V. Spracklen, G. W. Mann, S. J. Pickering, and K. S. Carslaw (2009). Atmos. Chem.  Phys., 9, 8601-8616. <br>R. Zhang (2010). Science, 328, 1366-1367. <br>T. Anttila, H. Vehkamäki, I. Napari, M. Kulmala (2005). Boreal Env. Res., 10, 523. <br>M.J. McGrath, T. Olenius, I.K. Ortega, V. Loukonen, P.  Paasonen, T. Kurten, M. Kulmala (2012). Atmos. Chem. Phys., 12, 2355. <br></em></p> </div>


2021 ◽  
Author(s):  
Rongjie Zhang ◽  
Jiewen Shen ◽  
Hong-Bin Xie ◽  
Jingwen Chen ◽  
Jonas Elm

Abstract. Atmospheric organic acids (OAs) are expected to enhance methanesulfonic acid (MSA)-driven new particle formation (NPF). However, the exact role of OAs in MSA-driven NPF remains unclear. Here, we employed a two-step strategy to probe the role of OAs in MSA-methylamine (MA) NPF. Initially, we evaluated the enhancing potential of 12 commonly detected OAs in ternary MA-MSA-OA cluster formation by considering the formation free energies of the (MSA)1(MA)1(OA)1 clusters and the atmospheric concentrations of the OAs. It was found that formic acid (ForA) has the highest potential to stabilize the MA-MSA clusters. The high enhancing potential of ForA results from its acidity, structural factors such as no intramolecular H-bonds and high atmospheric abundance. The second step is to extend the MSA-MA-ForA system to larger cluster sizes. The results indicate that ForA can indeed enhance MSA-MA NPF at atmospheric conditions (the upper limited temperature is 258.15 K), indicating that ForA might have an important role in MSA-driven NPF. The enhancing effect of ForA is mainly caused by an increased formation of the (MSA)2(MA)1 cluster, which is involved in the pathway of binary MSA-MA nucleation. Hence, our results indicate that OAs might be required to facilitate MSA-driven NPF in the atmosphere.


2011 ◽  
Vol 11 (8) ◽  
pp. 24165-24189 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
D. L. Yue ◽  
J. Zheng ◽  
R. Y. Zhang ◽  
...  

Abstract. New particle formation (NPF) is considered as an important mechanism for gas-to-particle transformation, and gaseous sulfuric acid is believed as a curcial precursor. Up to now few field-based studies on nucleation mechanisms and the role of sulfuric acid were conducted in China. In this study, simultaneously measurements of particle number size distributions and gaseous sulfuric acid concentrations were performed from July to September in 2008. Totally, 22 new particle formation events were observed during the entire 85 campaign days. The results show that the condensation sink of pre-existing particles is one of the limiting factors to determine the occurrence of nucleation events in Beijing. The concentrations of gaseous sulfuric acid show good correlations with freshly nucleated particles (N3–6) and formation rates (J3 and J1.5). The power-law relationship between H2SO4 concentration and N3–6 or J was adopted to explore the nucleation mechanism. The exponents range from 1 to 5. More than half of the NPF events exhibit an exponent larger than 2.5. For these cases, the thermodynamic process works better than the activation or kinetic nucleation theories to explain the nucleation events in urban atmosphere of Beijing.


2010 ◽  
Vol 10 (10) ◽  
pp. 4953-4960 ◽  
Author(s):  
D. L. Yue ◽  
M. Hu ◽  
R. Y. Zhang ◽  
Z. B. Wang ◽  
J. Zheng ◽  
...  

Abstract. Simultaneous measurements of gaseous sulfuric acid and particle number size distributions were performed to investigate aerosol nucleation and growth during CAREBeijing-2008. The analysis of the measured aerosols and sulfuric acid with an aerosol dynamic model shows the dominant role of sulfuric acid in new particle formation (NPF) process but also in the subsequent growth in Beijing. Based on the data of twelve NPF events, the average formation rates (2–13 cm−3 s−1) show a linear correlation with the sulfuric acid concentrations (R2=0.85). Coagulation seems to play a significant role in reducing the number concentration of nucleation mode particles with the ratio of the coagulation loss to formation rate being 0.41±0.16. The apparent growth rates vary from 3 to 11 nm h−1. Condensation of sulfuric acid and its subsequent neutralization by ammonia and coagulation contribute to the apparent particle growth on average 45±18% and 34±17%, respectively. The 30% higher concentration of sulfate than organic compounds in particles during the seven sulfur-rich NPF events but 20% lower concentration of sulfate during the five sulfur-poor type suggest that organic compounds are an important contributor to the growth of the freshly nucleated particles, especially during the sulfur-poor cases.


2011 ◽  
Vol 11 (24) ◽  
pp. 12663-12671 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
D. L. Yue ◽  
J. Zheng ◽  
R. Y. Zhang ◽  
...  

Abstract. New particle formation (NPF) is considered as an important mechanism for gas-to-particle transformation, and gaseous sulfuric acid is believed as a crucial precursor. Up to now few field-based studies on nucleation mechanisms and the role of sulfuric acid were conducted in China. In this study, simultaneously measurements of particle number size distributions and gaseous sulfuric acid concentrations were performed from July to September in 2008. Totally, 22 new particle formation events were observed during the entire 85 campaign days. The results show that in the case of both higher source and sink values, the result of the competition between source and sink is more likely the key limiting factor to determine the observation of NPF events in Beijing. The concentrations of gaseous sulfuric acid show good correlations with freshly nucleated particles (N3-6 and formation rates (J3 and J1.5. The power-law relationship between H2SO4 concentration and N3-6 or J is adopted to explore the nucleation mechanism. The exponents are showed a great range (from 1 to 7). More than half of the NPF events exhibit an exponent larger than 2.5. For these cases, the thermodynamic process works better than the activation or kinetic nucleation theories to explain the nucleation events in urban atmosphere of Beijing.


2010 ◽  
Vol 10 (2) ◽  
pp. 2711-2729 ◽  
Author(s):  
D. L. Yue ◽  
M. Hu ◽  
R. Y. Zhang ◽  
Z. B. Wang ◽  
J. Zheng ◽  
...  

Abstract. Simultaneous measurements of gaseous sulfuric acid and particle number size distributions were performed to investigate aerosol nucleation and growth during CAREBeijing-2008. The analysis of the measured aerosols and sulfuric acid with an aerosol dynamic model shows the dominant role of sulfuric acid in new particle formation (NPF) process but also in the subsequent growth in Beijing. Based on the data of twelve NPF events, the average formation rates (2–13 cm−3 s−1) show a linear correlation with the sulfuric acid concentrations (R2=0.85). Coagulation seems to play a significant role in reducing the number concentration of nucleation mode particles with the ratio of the coagulation loss to formation rate being 0.41±0.16. The apparent growth rates vary from 3 to 11 nm h−1. Condensation of sulfuric acid and its subsequent neutralization by ammonia and coagulation contribute to the apparent particle growth on average 45±18% and 34±17%, respectively. The 30% higher concentration of sulfate than organic compounds in particles during the seven sulfur-rich NPF events but 20% lower concentration of sulfate during the five sulfur-poor type suggest that organic compounds are an important contributor to the growth of the freshly nucleated particles, especially during the sulfur-poor cases.


2021 ◽  
Vol 118 (35) ◽  
pp. e2108384118
Author(s):  
Ling Liu ◽  
Fangqun Yu ◽  
Lin Du ◽  
Zhi Yang ◽  
Joseph S. Francisco ◽  
...  

Recent research [Wang et al., Nature 581, 184–189 (2020)] indicates nitric acid (NA) can participate in sulfuric acid (SA)–ammonia (NH3) nucleation in the clean and cold upper free troposphere, whereas NA exhibits no obvious effects at the boundary layer with relatively high temperatures. Herein, considering that an SA–dimethylamine (DMA) nucleation mechanism was detected in megacities [Yao et al., Science 361, 278–281 (2018)], the roles of NA in SA-DMA nucleation are investigated. Different from SA-NH3 nucleation, we found that NA can enhance SA-DMA–based particle formation rates in the polluted atmospheric boundary layer, such as Beijing in winter, with the enhancement up to 80-fold. Moreover, we found that NA can promote the number concentrations of nucleation clusters (up to 27-fold) and contribute 76% of cluster formation pathways at 280 K. The enhancements on particle formation by NA are critical for particulate pollution in the polluted boundary layer with relatively high NA and DMA concentrations.


2021 ◽  
Author(s):  
James Brean ◽  
Manuel Dall’Osto ◽  
Rafel Simó ◽  
Zongbo Shi ◽  
David C. S. Beddows ◽  
...  

2018 ◽  
Vol 18 (16) ◽  
pp. 11779-11791 ◽  
Author(s):  
Ximeng Qi ◽  
Aijun Ding ◽  
Pontus Roldin ◽  
Zhengning Xu ◽  
Putian Zhou ◽  
...  

Abstract. Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two “flagship” stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6–30 nm particles were 0.3 cm−3 s−1 and 4.5 nm h−1 at SMEAR II compared to 2.3 cm−3 s−1 and 8.7 nm h−1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.


Sign in / Sign up

Export Citation Format

Share Document