scholarly journals Storing electricity as chemical energy: beyond traditional electrochemistry and double-layer compression

2018 ◽  
Vol 11 (11) ◽  
pp. 3069-3074 ◽  
Author(s):  
Markus Antonietti ◽  
Xiaodong Chen ◽  
Runyu Yan ◽  
Martin Oschatz

Local electric fields in IL-based supercapacitors can change the ionic coordination structure to store electric energy in the bulk of filled mesopores.

2020 ◽  
Vol 56 (88) ◽  
pp. 13611-13614
Author(s):  
Jialu Wang ◽  
Xian Zhang ◽  
Guozhong Wang ◽  
Yunxia Zhang ◽  
Haimin Zhang

A new type of direct 5-hydroxymethylfurfural (HMF) oxidation fuel cell based on a bifunctional PtNiSx/CB catalyst not only transformed chemical energy into electric energy but also converted HMF into value-added 2,5-furandicarboxylic (FDCA).


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 272 ◽  
Author(s):  
Quanzhi Chen ◽  
Weizhou Li ◽  
Kui Ling ◽  
Ruixia Yang

The aluminum–titanium (Al-Ti) double-layer composite plate is a promising composite material, but necessary surface protection was required before its application. In this paper, plasma electrolytic oxidation (PEO) was employed to fabricate a ceramic coating on the surface of a Al-Ti double-layer composite plate. To investigate the coating growth mechanism on the Al-Ti double-layer composite plate, a single-Al plate and a single-Ti plate were introduced for comparison experiments. Results showed that, the composite of Al and Ti accelerated the coating growth rate on the part-Ti portion of the composite plate, and that of the part-Al portion was decreased. Electrochemical impedance spectroscopy analysis indicated that the equivalent circuit of the Al-Ti coating was formed by connecting two different circuits in parallel. The reaction behavior revealed that the electric energy during the PEO would leak from the circuit with the weaker blocking effect, and confirmed that the electric energy distribution followed the law of low-resistance distribution. Finally, the mechanism was extended to the PEO treatment on general metal matrix composites to broaden the application theory of the technology.


2011 ◽  
Vol 493-494 ◽  
pp. 170-174
Author(s):  
Rumi Hiratai ◽  
Miho Nakamura ◽  
Akiko Nagai ◽  
Kimihiro Yamashita

We have shown that hydroxyapatite (HA), which characteristics were similar to those of bone’s inorganic components, had polarization capability and was possible to accumulate electricity under high temperature and pressure. Then, we presumed that bones had polarization capability which enabled electrical storage and conducted the experiment to measure the polarization capability of bones using rabbit’s femurs. After preparing and polarizing bone samples using KOH treatment (koh), KOH and baking treatment (koh+bake) and decalcification treatment (decalcification) as well as the bone without any treatment (untreat), quantitative amounts of stored charge in samples were determined by thermally stimulated depolarization current (TSDC) measurement of these samples. Under the condition of 400 °C for 1 h with the electric fields of 5kV/cm, samples of koh, koh+bake, and untreat showed polarization capability. In addition, under the polarization condition of 37 °C for 1 hour with the electric fields of 5kV/cm, all samples showed polarization capability. Those findings can be summarized that bones have the polarization capability which enables electrical storage and polarization of bones is possible even under the low temperature condition, which was at 37 °C in our experiment, where polarization is impossible for HA.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 72 ◽  
Author(s):  
Bintao Du ◽  
Jun Xia ◽  
Jun Wu ◽  
Jian Zhao ◽  
Hao Zhang

This paper first presents a switchable photonic nanojet (PNJ) generated by a polystyrene (PS) microsphere immersed in nematic liquid crystals (NLCs). The PNJ is switched by applying external voltage, which originates from the refractive index change in the surrounding medium caused by the field-induced realignment of liquid crystal molecules. By tuning the refractive index of NLCs larger or smaller than that of the PS microsphere, the PNJ can be switched off or on. Moreover, we present an optimization study to seek a better electric energy focusing property of the PNJ. Our results reveal that the switchability of PNJ can be optimized by applying a shorter incident wavelength, a double-layer microsphere, and a PS ellipsoid. The full width at half-maximum (FWHM) generated by the PS ellipsoid is narrower than that generated by the microsphere with a shorter incident wavelength. The intensity contrast of the PS ellipsoid is higher than that of the double-layer microsphere. As a whole, the switchability of PNJ can be best optimized by a PS ellipsoid. This should open the way for the development of integrated photonic devices.


2020 ◽  
Vol 8 (18) ◽  
pp. 6102-6117 ◽  
Author(s):  
Xinyue Chen ◽  
Elshad Allahyarov ◽  
Deepak Langhe ◽  
Michael Ponting ◽  
Ruipeng Li ◽  
...  

High-field electric poling locks impurity ions at interfaces in multilayer polymer films, which enhances dielectric insulation and reduces ionic conduction loss for electric energy storage applications.


2000 ◽  
Vol 61 (4) ◽  
pp. 4019-4028 ◽  
Author(s):  
A. González ◽  
A. Ramos ◽  
N. G. Green ◽  
A. Castellanos ◽  
H. Morgan

2021 ◽  
Author(s):  
Yichun Ding ◽  
Pingwei Cai ◽  
Zhenhai Wen

Electrochemical neutralization energy establishes a bridge for facilitating energy conversion between some chemical energy and electric energy, shedding light on a promising strategy to develop high-performance aqueous electrochemical energy devices.


Soft Matter ◽  
2018 ◽  
Vol 14 (22) ◽  
pp. 4520-4529 ◽  
Author(s):  
Chunyu Shih ◽  
John J. Molina ◽  
Ryoichi Yamamoto

The field induced anisotropic interactions between like-charged colloidal particles is studied using direct numerical simulations, where the polarization of the electric double layer is explicitly computed under external AC electric fields.


Sign in / Sign up

Export Citation Format

Share Document