Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement

Lab on a Chip ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 178-185 ◽  
Author(s):  
Jessica Francis ◽  
Isaac Stamper ◽  
Jason Heikenfeld ◽  
Eliot F. Gomez

A digital flowmetry sensor is fabricated with low limit of detection and wide dynamic range, that is suitable for lab-on-chip or wearable sweat sensing systems.

Biosensors ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 202
Author(s):  
Rosario Iemmolo ◽  
Valentina La Cognata ◽  
Giovanna Morello ◽  
Maria Guarnaccia ◽  
Mariamena Arbitrio ◽  
...  

Background: Antineoplastic agents represent the most common class of drugs causing Adverse Drug Reactions (ADRs). Mutant alleles of genes coding for drug-metabolizing enzymes are the best studied individual risk factors for these ADRs. Although the correlation between genetic polymorphisms and ADRs is well-known, pharmacogenetic tests are limited to centralized laboratories with expensive or dedicated instrumentation used by specialized personnel. Nowadays, DNA chips have overcome the major limitations in terms of sensibility, specificity or small molecular detection, allowing the simultaneous detection of several genetic polymorphisms with time and costs-effective advantages. In this work, we describe the design of a novel silicon-based lab-on-chip assay able to perform low-density and high-resolution multi-assay analysis (amplification and hybridization reactions) on the In-Check platform. Methods: The novel lab-on-chip was used to screen 17 allelic variants of three genes associated with adverse reactions to common chemotherapeutic agents: DPYD (Dihydropyrimidine dehydrogenase), MTHFR (5,10-Methylenetetrahydrofolate reductase) and TPMT (Thiopurine S-methyltransferase). Results: Inter- and intra assay variability were performed to assess the specificity and sensibility of the chip. Linear regression was used to assess the optimal hybridization temperature set at 52 °C (R2 ≈ 0.97). Limit of detection was 50 nM. Conclusions: The high performance in terms of sensibility and specificity of this lab-on-chip supports its further translation to clinical diagnostics, where it may effectively promote precision medicine.


2020 ◽  
Vol 48 (22) ◽  
pp. e129-e129
Author(s):  
Ignacio Moya-Ramírez ◽  
Clement Bouton ◽  
Cleo Kontoravdi ◽  
Karen Polizzi

Abstract 5′ Cap structures are ubiquitous on eukaryotic mRNAs, essential for post-transcriptional processing, translation initiation and stability. Here we describe a biosensor designed to detect the presence of cap structures on mRNAs that is also sensitive to mRNA degradation, so uncapped or degraded mRNAs can be detected in a single step. The biosensor is based on a chimeric protein that combines the recognition and transduction roles in a single molecule. The main feature of this sensor is its simplicity, enabling semi-quantitative analyses of capping levels with minimal instrumentation. The biosensor was demonstrated to detect the capping level on several in vitro transcribed mRNAs. Its sensitivity and dynamic range remained constant with RNAs ranging in size from 250 nt to approximately 2700 nt and the biosensor was able to detect variations in the capping level in increments of at least 20%, with a limit of detection of 2.4 pmol. Remarkably, it also can be applied to more complex analytes, such mRNA vaccines and mRNAs transcribed in vivo. This biosensor is an innovative example of a technology able to detect analytically challenging structures such as mRNA caps. It could find application in a variety of scenarios, from quality analysis of mRNA-based products such as vaccines to optimization of in vitro capping reactions.


Author(s):  
T. Tokuda ◽  
D.C. Ng ◽  
H. Okamoto ◽  
K. Kagawa ◽  
Jun Ohta ◽  
...  

Author(s):  
Jesus Rodriguez-Manzano ◽  
Kenny Malpartida-Cardenas ◽  
Nicolas Moser ◽  
Ivana Pennisi ◽  
Matthew Cavuto ◽  
...  

AbstractThe COVID-19 pandemic is a global health emergency characterized by the high rate of transmission and ongoing increase of cases globally. Rapid point-of-care (PoC) diagnostics to detect the causative virus, SARS-CoV-2, are urgently needed to identify and isolate patients, contain its spread and guide clinical management. In this work, we report the development of a rapid PoC diagnostic test (< 20 min) based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and semiconductor technology for the detection of SARS-CoV-2 from extracted RNA samples. The developed LAMP assay was tested on a real-time benchtop instrument (RT-qLAMP) showing a lower limit of detection of 10 RNA copies per reaction. It was validated against 183 clinical samples including 127 positive samples (screened by the CDC RT-qPCR assay). Results showed 90.55% sensitivity and 100% specificity when compared to RT-qPCR and average positive detection times of 15.45 ± 4.43 min. For validating the incorporation of the RT-LAMP assay onto our PoC platform (RT-eLAMP), a subset of samples was tested (n=40), showing average detection times of 12.89 ± 2.59 min for positive samples (n=34), demonstrating a comparable performance to a benchtop commercial instrument. Paired with a smartphone for results visualization and geo-localization, this portable diagnostic platform with secure cloud connectivity will enable real-time case identification and epidemiological surveillance.One Sentence SummaryWe demonstrate isothermal detection of SARS-CoV-2 in under 20 minutes from extracted RNA samples with a handheld Lab-on-Chip platform.


2021 ◽  
Author(s):  
Shaik Ahmadsaidulu ◽  
B. Vamsi Krsihna ◽  
B V V Satyanarayana ◽  
Durga Prakash Matta

Abstract Cardiac arrests are one of the major health problems in present days. Cardiac Troponin-I (cTnI) is one of the important enzymes that causes cardiac arrest. Early diagnosis and proper medication of this saves human life. One of the prominent devices to diagnose troponin I is FET based bio-sensor. Normally, for these sensors’ higher sensitivities will be obtained as these biosensors structure consists of nanowire FETs. Proper selection of materials, dimensions, and doping concentrations of nanowire FET imply the perfection of a nanowire FET-based biosensor. In this work, Silicon Nanowire (SiNW) FET sensor is designed and simulated using COMSOL Multiphysics. Through this design, Identified the presence of different concentrations of cTnI present in human blood. The presence of different enzymes like cTnT, cTnI etc., bring changes in characteristics of SiNW FET sensor. With these changes in characteristics, we can identify the presence of these enzymes of a lower concentration also. The lower concentrations of these biomarkers will bring notable changes in the drain current. The characteristics were analysed with the SiNW FET which is equipped with immobilized antibodies on it. The considerable changes observed in these characteristics of FET sensor identifies the presence of cTnI biomarker and are attached to the monoclonal Antibodies (mAb). Our observations shown that the properties of designed SiNW FET changes with presence of these bio marker materials and a limit of detection is obtained the order of 2pg/mL. with further the design bio sensor with SiNW FET can be used for microfluidic and Lab-on-Chip applications also.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Sarah Mishriki ◽  
Srivatsa Aithal ◽  
Tamaghna Gupta ◽  
Rakesh P. Sahu ◽  
Fei Geng ◽  
...  

Fibroblasts (mouse, NIH/3T3) are combined with MDA-MB-231 cells to accelerate the formation and improve the reproducibility of 3D cellular structures printed with magnetic assistance. Fibroblasts and MDA-MB-231 cells are cocultured to produce 12.5 : 87.5, 25 : 75, and 50 : 50 total population mixtures. These mixtures are suspended in a cell medium containing a paramagnetic salt, Gd-DTPA, which increases the magnetic susceptibility of the medium with respect to the cells. A 3D monotypic MDA-MB-231 cellular structure is printed within 24 hours with magnetic assistance, whereas it takes 48 hours to form a similar structure through gravitational settling alone. The maximum projected areas and circularities, and cellular ATP levels of the printed structures are measured for 336 hours. Increasing the relative amounts of the fibroblasts mixed with the MDA-MB-231 cells decreases the time taken to form the structures and improves their reproducibility. Structures produced through gravitational settling have larger maximum projected areas and cellular ATP, but are deemed less reproducible. The distribution of individual cell lines in the cocultured 3D cellular structures shows that printing with magnetic assistance yields 3D cellular structures that resemble in vivo tumors more closely than those formed through gravitational settling. The results validate our hypothesis that (1) fibroblasts act as a “glue” that supports the formation of 3D cellular structures, and (2) the structures are produced more rapidly and with greater reproducibility with magnetically assisted printing than through gravitational settling alone. Printing of 3D cellular structures with magnetic assistance has applications relevant to drug discovery, lab-on-chip devices, and tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document