scholarly journals Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing

Lab on a Chip ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 493-502 ◽  
Author(s):  
Hesam Babahosseini ◽  
Tom Misteli ◽  
Don L. DeVoe

A multifunctional microfluidic platform combining on-demand aqueous-phase droplet generation, multi-droplet storage, and controlled merging of droplets selected from a storage library in a single integrated microfluidic device is described.

2015 ◽  
Vol 9 (1) ◽  
pp. 014119 ◽  
Author(s):  
Uwe Tangen ◽  
Abhishek Sharma ◽  
Patrick Wagler ◽  
John S. McCaskill

Lab on a Chip ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 3914-3921
Author(s):  
Kirk Mutafopulos ◽  
Peter J. Lu ◽  
Ryan Garry ◽  
Pascal Spink ◽  
David A. Weitz

We generate traveling surface acoustic waves with an interdigital transducer to create droplets on-demand; encapsulate single cells; lyse cells and immediately encapsulate their contents; and pico-inject new materials into existing droplets.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 225-236 ◽  
Author(s):  
Steve C. C. Shih ◽  
Philip C. Gach ◽  
Jess Sustarich ◽  
Blake A. Simmons ◽  
Paul D. Adams ◽  
...  

We have developed a new hybrid droplet-to-digital microfluidic platform (D2D) that integrates droplet-in-channel microfluidics with digital microfluidics for performing multi-step single cell assays.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Huichao Chai ◽  
Yongxiang Feng ◽  
Fei Liang ◽  
Wenhui Wang

Successful single-cell isolation is a pivotal technique for subsequent biological and chemical analysis of single cells. Although significant advances have been made in single-cell isolation and analysis techniques, most passive...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jeremy A. Lombardo ◽  
Marzieh Aliaghaei ◽  
Quy H. Nguyen ◽  
Kai Kessenbrock ◽  
Jered B. Haun

AbstractTissues are complex mixtures of different cell subtypes, and this diversity is increasingly characterized using high-throughput single cell analysis methods. However, these efforts are hindered, as tissues must first be dissociated into single cell suspensions using methods that are often inefficient, labor-intensive, highly variable, and potentially biased towards certain cell subtypes. Here, we present a microfluidic platform consisting of three tissue processing technologies that combine tissue digestion, disaggregation, and filtration. The platform is evaluated using a diverse array of tissues. For kidney and mammary tumor, microfluidic processing produces 2.5-fold more single cells. Single cell RNA sequencing further reveals that endothelial cells, fibroblasts, and basal epithelium are enriched without affecting stress response. For liver and heart, processing time is dramatically reduced. We also demonstrate that recovery of cells from the system at periodic intervals during processing increases hepatocyte and cardiomyocyte numbers, as well as increases reproducibility from batch-to-batch for all tissues.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 662
Author(s):  
Nikita A. Filatov ◽  
Anatoly A. Evstrapov ◽  
Anton S. Bukatin

Droplet microfluidics is an extremely useful and powerful tool for industrial, environmental, and biotechnological applications, due to advantages such as the small volume of reagents required, ultrahigh-throughput, precise control, and independent manipulations of each droplet. For the generation of monodisperse water-in-oil droplets, usually T-junction and flow-focusing microfluidic devices connected to syringe pumps or pressure controllers are used. Here, we investigated droplet-generation regimes in a flow-focusing microfluidic device induced by the negative pressure in the outlet reservoir, generated by a low-cost mini diaphragm vacuum pump. During the study, we compared two ways of adjusting the negative pressure using a compact electro-pneumatic regulator and a manual airflow control valve. The results showed that both types of regulators are suitable for the stable generation of monodisperse droplets for at least 4 h, with variations in diameter less than 1 µm. Droplet diameters at high levels of negative pressure were mainly determined by the hydrodynamic resistances of the inlet microchannels, although the absolute pressure value defined the generation frequency; however, the electro-pneumatic regulator is preferable and convenient for the accurate control of the pressure by an external electric signal, providing more stable pressure, and a wide range of droplet diameters and generation frequencies. The method of droplet generation suggested here is a simple, stable, reliable, and portable way of high-throughput production of relatively large volumes of monodisperse emulsions for biomedical applications.


Lab on a Chip ◽  
2006 ◽  
Vol 6 (2) ◽  
pp. 174 ◽  
Author(s):  
Lung-Hsin Hung ◽  
Kyung M. Choi ◽  
Wei-Yu Tseng ◽  
Yung-Chieh Tan ◽  
Kenneth J. Shea ◽  
...  

Lab on a Chip ◽  
2011 ◽  
Vol 11 (1) ◽  
pp. 104-114 ◽  
Author(s):  
Min Jung Kim ◽  
Su Chul Lee ◽  
Sukdeb Pal ◽  
Eunyoung Han ◽  
Joon Myong Song

2016 ◽  
Vol 10 (6) ◽  
pp. 064111 ◽  
Author(s):  
Ramtin Ardeshiri ◽  
Ben Mulcahy ◽  
Mei Zhen ◽  
Pouya Rezai

2018 ◽  
Vol 30 (8) ◽  
pp. 084001 ◽  
Author(s):  
Keke Chen ◽  
Chenxi Sui ◽  
Yue Wu ◽  
Zheng Ao ◽  
Shi-shang Guo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document