scholarly journals Discovery of potent pyruvate dehydrogenase kinase inhibitors and evaluation of their anti-lung cancer activity under hypoxia

MedChemComm ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 1843-1849 ◽  
Author(s):  
Ronghua Yang ◽  
Caihong Guo

Targeting pyruvate dehydrogenase kinases (PDKs) reverses the Warburg effect, which could be a potential therapeutic target for anti-cancer drug discovery.

2019 ◽  
Vol 2 (3) ◽  
pp. 105-119 ◽  
Author(s):  
Russel J Reiter ◽  
Ramaswamy Sharma ◽  
Qiang Ma ◽  
Sergio Rosales-Corral ◽  
Dario Acuna-Castroviejo ◽  
...  

This review presents a hypothesis to explain the role of melatonin in regulating glucose metabolism in cancer cells.  Many cancer cells use cytosolic glycolysis (the Warburg effect) to produce energy (ATP).  Under these conditions, glucose is primarily converted to lactate which is released into the blood in large quantities. The Warburg effect gives cancer cells advantages in terms of enhanced macromolecule synthesis required for accelerated cellular proliferation, reduced cellular apoptosis which enhances tumor biomass and a greater likelihood of metastasis.  Based on available data, high circulating melatonin levels at night serve as a signal for breast cancer cells to switch from cytosolic glycolysis to mitochondrial glucose oxidation and oxidative phosphorylation for ATP production. In this situation, melatonin promotes the synthesis of acetyl-CoA from pyruvate; we speculate that melatonin does this by inhibiting the mitochondrial enzyme pyruvate dehydrogenase kinase (PDK) which normally inhibits pyruvate dehydrogenase complex (PDC), the enzyme that controls the pyruvate to acetyl-CoA conversion. Acetyl-CoA has several important functions in the mitochondria; it feeds into the citric acid cycle which improves oxidative phosphorylation and, additionally, it is a necessary co-factor for the rate limiting enzyme, arylalkylamine N-acetyltransferase, in mitochondrial melatonin synthesis.  When breast cancer cells are using cytosolic glycolysis (during the day) they are of the cancer phenotype; at night when they are using mitochondria to produce ATP via oxidative phosphorylation, they have a normal cell phenotype. If this day:night difference in tumor cell metabolism is common in other cancers, it indicates that these tumor cells are only cancerous part of the time.  We also speculate that high nighttime melatonin levels also reverse the insensitivity of tumors to chemotherapy.


2020 ◽  
Vol 17 (9) ◽  
pp. 1102-1116
Author(s):  
Sudip Kumar Mandal ◽  
Utsab Debnath ◽  
Amresh Kumar ◽  
Sabu Thomas ◽  
Subhash Chandra Mandal ◽  
...  

Background and Introduction: Sesquiterpene lactones are a class of secondary metabolite that contains sesquiterpenoids and lactone ring as pharmacophore moiety. A large group of bioactive secondary metabolites such as phytopharmaceuticals belong to this category. From the Asteraceae family-based medicinal plants, more than 5,000 sesquiterpene lactones have been reported so far. Sesquiterpene lactone-based pharmacophore moieties hold promise for broad-spectrum biological activities against cancer, inflammation, parasitic, bacterial, fungal, viral infection and other functional disorders. Moreover, these moiety based phytocompounds have been highlighted with a new dimension in the natural drug discovery program worldwide after the 2015 Medicine Nobel Prize achieved by the Artemisinin researchers. Objective: These bitter substances often contain an α, β-unsaturated-γ-lactone as a major structural backbone, which in recent studies has been explored to be associated with anti-tumor, cytotoxic, and anti-inflammatory action. Recently, the use of sesquiterpene lactones as phytomedicine has been increased. This study will review the prospect of sesquiterpene lactones against inflammation and cancer. Methods: Hence, we emphasized on the different features of this moiety by incorporating its structural diversity on biological activities to explore structure-activity relationships (SAR) against inflammation and cancer. Results: How the dual mode of action such as anti-inflammatory and anti-cancer has been exhibitedby these phytopharmaceuticals will be forecasted in this study. Furthermore, the correlation of anti-inflammatory and anti-cancer activity executed by the sesquiterpene lactones for fruitful phytotherapy will also be revealed in the present review in the milieu of pharmacophore activity relation and pharmacodynamics study as well. Conclusion: So, these metabolites are paramount in phytopharmacological aspects. The present discussion on the future prospect of this moiety based on the reported literature could be a guide for anti-inflammatory and anti-cancer drug discovery programs for the upcoming researchers.


2019 ◽  
Vol 19 (7) ◽  
pp. 842-874 ◽  
Author(s):  
Harbinder Singh ◽  
Nihar Kinarivala ◽  
Sahil Sharma

We live in a world with complex diseases such as cancer which cannot be cured with one-compound one-target based therapeutic paradigm. This could be due to the involvement of multiple pathogenic mechanisms. One-compound-various-targets stratagem has become a prevailing research topic in anti-cancer drug discovery. The simultaneous interruption of two or more targets has improved the therapeutic efficacy as compared to the specific targeted based therapy. In this review, six types of dual targeting agents along with some interesting strategies used for their design and synthesis are discussed. Their pharmacology with various types of the molecular interactions within their specific targets has also been described. This assemblage will reveal the recent trends and insights in front of the scientific community working in dual inhibitors and help them in designing the next generation of multi-targeted anti-cancer agents.


2016 ◽  
Vol 16 (10) ◽  
pp. 1339-1352 ◽  
Author(s):  
Alessandra C. Pinheiro ◽  
Thais C. Mendonça Nogueira ◽  
Marcus V.N. de Souza

Sign in / Sign up

Export Citation Format

Share Document