Dual photoredox and nickel-catalyzed desymmetric C–O coupling reactions: visible light-mediated enantioselective synthesis of 1,4-benzodioxanes

2018 ◽  
Vol 5 (21) ◽  
pp. 3098-3102 ◽  
Author(s):  
Quan-Quan Zhou ◽  
Fu-Dong Lu ◽  
Dan Liu ◽  
Liang-Qiu Lu ◽  
Wen-Jing Xiao

Chiral 2,2′-bipyridine ligands are key to success in an enantioselective desymmetric C–O cross coupling reaction via dual visible light photoredox and nickel catalysis, resulting in chiral 1,4-benzodioxanes under mild reaction conditions.

Synthesis ◽  
2020 ◽  
Vol 52 (16) ◽  
pp. 2387-2394 ◽  
Author(s):  
Jorge A. Cabezas ◽  
Natasha Ferllini

A regiospecific palladium-catalyzed cross-coupling reaction using the operational equivalent of the dianion 1,3-dilithiopropyne, with aromatic iodides is reported. This reaction gives high yields of 1-propyn-1-yl-benzenes and 2-(propyn-1-yl)thiophenes in the presence of catalytic amounts of palladium(0) or (II) and stoichiometric amounts of copper iodide. No terminal alkyne or allene isomers were detected. Reaction conditions were very mild and several functional groups were tolerated.


2018 ◽  
Vol 54 (32) ◽  
pp. 3993-3996 ◽  
Author(s):  
Yin-Na Zhao ◽  
Yong-Chun Luo ◽  
Zhu-Yin Wang ◽  
Peng-Fei Xu

A para-quinone methide and difluoroalkylating reagent involved radical cross-coupling reaction was described, through photocatalytically generated diarylmethane radical intermediates.


Synthesis ◽  
2019 ◽  
Vol 51 (22) ◽  
pp. 4153-4164
Author(s):  
Linda M. Bannwart ◽  
Pascal S. Rieder ◽  
Marcel Mayor

Organosulfur compounds are ubiquitous in synthetic chemistry, biology and materials chemistry. The reactivity of free sulfhydryls requires their masking in many synthetic strategies. To facilitate the isolation of protected thiols by chromatography, we propose 2-(3-cyanopropyldimethylsilyl)ethyl as a polar protecting group analogue of 2-(trimethylsilyl)ethyl. The masked thiophenol is obtained in two synthetically complementing ways. Either an existing thiophenol is protected, or the protected thiol group is introduced by a cross-coupling reaction. In both cases the required reagents are readily available from inexpensive starting materials. Thiol protection and thiol introduction both tolerate a large variety of functional groups and substitution patterns, and the protected thiophenols are stable toward a broad range of reaction conditions. The stability of the protected derivatives in cross-coupling reactions and the mild reaction conditions for the release of the protecting group further emphasizes the potential of the methodology.


Synlett ◽  
2017 ◽  
Vol 29 (03) ◽  
pp. 330-335 ◽  
Author(s):  
Zheng-Jun Quan ◽  
Xi-Cun Wang ◽  
Ming-Xia Liu ◽  
Hai-Peng Gong

Dihetaryl disulfides were used as electrophiles in a palladium-catalyzed carbon–carbon cross-coupling reaction with arylsilanes to ­realize a Hiyama-type reaction. This unique transformation shows high reactivity, excellent functional-group tolerance, and mild reaction conditions, making it an attractive alternative to conventional cross-coupling approaches for carbon−carbon bond construction.


2014 ◽  
Vol 10 ◽  
pp. 2821-2826 ◽  
Author(s):  
Claudia Araceli Contreras-Celedón ◽  
Darío Mendoza-Rayo ◽  
José A Rincón-Medina ◽  
Luis Chacón-García

A simple and efficient catalytic system based on a Pd complex of 4-aminoantipyrine, 4-AAP–Pd(II), was found to be highly active for Suzuki–Miyaura cross-coupling of aryl iodides and bromides with phenylboronic acids under mild reaction conditions. Good to excellent product yields from the cross-coupling reaction can be achieved when the reaction is carried out in ethanol, in the open air, using low loading of 4-AAP–Pd(II) as a precatalyst, and in the presence of aqueous K2CO3 as the base. A variety of functional groups are tolerated.


Author(s):  
Hany A. Elazab ◽  
Ali R. Siamaki ◽  
B. Frank Gupton ◽  
M. Samy El-Shall

There are several crucial issues that need to be addressed in the field of applied catalysis. These issues are not only related to harmful environmental impact but also include process safety concerns, mass and heat transfer limitations, selectivity, high pressure, optimizing reaction conditions, scale-up issues, reproducibility, process reliability, and catalyst deactivation and recovery. Many of these issues could be solved by adopting the concept of micro-reaction technology and flow chemistry in the applied catalysis field. A microwave assisted reduction technique has been used to prepare well dispersed, highly active Pd/Fe3O4 nanoparticles supported on reduced graphene oxide nanosheets (Pd-Fe3O4/RGO), which act as a unique catalyst for Suzuki cross coupling reactions due to the uniform dispersion of palladium nanoparticles throughout the surface of the magnetite - RGO support. The Pd-Fe3O4/RGO nanoparticles have been shown to exhibit extremely high catalytic activity for Suzuki cross coupling reactions under both batch and continuous reaction conditions. This paper reported a reliable method for Suzuki cross-coupling reaction of 4-bromobenzaldehyde using magnetically recyclable Pd/Fe3O4 nanoparticles supported on RGO nanosheets in a microfluidic-based high throughput flow reactor. Organic synthesis can be performed under high pressure and temperature by using a stainless steel micro tubular flow reactor under continuous flow reaction conditions. Optimizing the reaction conditions was performed via changing several parameters including temperature, pressure, and flow rate. Generally, a scalable flow technique by optimizing the reaction parameters under high-temperature and continuous reaction conditions could be successfully developed.


2020 ◽  
Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.


2019 ◽  
Vol 25 (35) ◽  
pp. 8371-8386 ◽  
Author(s):  
Irene Erdelmeier ◽  
Gerd Bülow ◽  
Chang‐Wan Woo ◽  
Jürgen Decker ◽  
Gerhard Raabe ◽  
...  

Synlett ◽  
2017 ◽  
Vol 28 (16) ◽  
pp. 2153-2156 ◽  
Author(s):  
Wen-Ting Wei ◽  
Hongze Liang ◽  
Wen-Ming Zhu ◽  
Weida Liang ◽  
Yi Wu ◽  
...  

A radical–radical cross-coupling reaction of phenols with tert-butyl nitrite has been developed with the use of water as an additive. This method allows the construction of C–N bonds under an air atmosphere at room temperature, providing the ortho-nitrated phenol derivative in moderate to good yields.


RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 40000-40015 ◽  
Author(s):  
Nedra Touj ◽  
Abdullah S. Al-Ayed ◽  
Mathieu Sauthier ◽  
Lamjed Mansour ◽  
Abdel Halim Harrath ◽  
...  

The in situ prepared four component system Pd(OAc)2, 1,3-dialkylbenzimidazolium halides 2a–i and 4a–i, K2CO3 under CO atmosphere catalyses carbonylative cross-coupling reaction of 2-bromopyridine with various boronic acids to yield unsymmetrical arylpyridine ketones.


Sign in / Sign up

Export Citation Format

Share Document