Room-Temperature, Water-Promoted, Radical-Coupling Reactions of Phenols with tert-Butyl Nitrite

Synlett ◽  
2017 ◽  
Vol 28 (16) ◽  
pp. 2153-2156 ◽  
Author(s):  
Wen-Ting Wei ◽  
Hongze Liang ◽  
Wen-Ming Zhu ◽  
Weida Liang ◽  
Yi Wu ◽  
...  

A radical–radical cross-coupling reaction of phenols with tert-butyl nitrite has been developed with the use of water as an additive. This method allows the construction of C–N bonds under an air atmosphere at room temperature, providing the ortho-nitrated phenol derivative in moderate to good yields.

2019 ◽  
Vol 21 (19) ◽  
pp. 5267-5273 ◽  
Author(s):  
Junjuan Yang ◽  
Yuanyuan Wu ◽  
Xiaowei Wu ◽  
Wenjing Liu ◽  
Yaofang Wang ◽  
...  

We report a heterogeneous catalyst based on N-heterocyclic carbene-functionalized covalent organic framework, which shows high activity in the C–C cross coupling reaction at room temperature in pure/ethanol aqueous solvent even with multiple reuse.


2015 ◽  
Vol 39 (4) ◽  
pp. 2440-2443 ◽  
Author(s):  
Bishwajit Saikia ◽  
Abdul Aziz Ali ◽  
Preeti Rekha Boruah ◽  
Diganta Sarma ◽  
Nabin Chandra Barua

Suzuki–Miyaura cross-coupling reaction catalyzed by Pd(OAc)2–(DHQD)2PHAL is a very simple, mild, efficient and recyclable/reusable protocol for the synthesis of biaryls/heterobiaryls in neat H2O at room temperature.


2002 ◽  
Vol 2002 (8) ◽  
pp. 376-377 ◽  
Author(s):  
Ming-Zhong Cai ◽  
Chun-Yun Peng ◽  
Hong Zhao ◽  
Jia-Di Huang

( E)-α-Bromovinylselenides undergo a cross coupling reaction with alkynyl Grignard reagents in the presence of tetrakis(triphenylphosphine)palladium(0) in THF at room temperature to afford 1,3-enynylselenides in good yields.


2020 ◽  
Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.


RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 40000-40015 ◽  
Author(s):  
Nedra Touj ◽  
Abdullah S. Al-Ayed ◽  
Mathieu Sauthier ◽  
Lamjed Mansour ◽  
Abdel Halim Harrath ◽  
...  

The in situ prepared four component system Pd(OAc)2, 1,3-dialkylbenzimidazolium halides 2a–i and 4a–i, K2CO3 under CO atmosphere catalyses carbonylative cross-coupling reaction of 2-bromopyridine with various boronic acids to yield unsymmetrical arylpyridine ketones.


Author(s):  
Jonathon Moir

Pharmaceuticals and drugs have become an indispensable part of human life. Presently, a myriad of different drugs are available for a variety of mental and physical health concersn. The synthesis of these drugs, however, remains an elusive and often difficult aspect of the industry. The importance of chirality, or "handedness", in the synthesis of natural products is paramount, as any given pair of enantiomers can have widely differing physiological effects. As such, the ability to control the enantioselectivity of a reaction is of the utmost importance. One example of a facile method used to form carbon-carbon bonds is the Suzuki-Miyaura cross-coupling reaction. Not only is this reaction effective at coupling primary organoboronic esters with organohalides, but recent work in the Crudden group in the Department of Chemistry has revealed an effective method of also cross-couplingchiral secondary organoboronic esters with good retention of stereochemistry. This work, the first of its kind, is crucial in developing single-handed natural products for a wide array of applications, including applications in the pharmaceutical industry. The end result is safer and more effective drugs for distribution to the general public. To expand the scope of this project, new substrates are currently being synthesized for cross-coupling applications. The overall goal is to improve upon current methodologies, while helping to meet the industrial and academic needs of the future.  


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2714 ◽  
Author(s):  
Matteo Savastano ◽  
Paloma Arranz-Mascarós ◽  
Maria Paz Clares ◽  
Rafael Cuesta ◽  
Maria Luz Godino-Salido ◽  
...  

A new G-(H2L)-Pd heterogeneous catalyst has been prepared via a self-assembly process consisting in the spontaneous adsorption, in water at room temperature, of a macrocyclic H2L ligand on graphene (G) (G + H2L = G-(H2L)), followed by decoration of the macrocycle with Pd2+ ions (G-(H2L) + Pd2+ = G-(H2L)-Pd) under the same mild conditions. This supramolecular approach is a sustainable (green) procedure that preserves the special characteristics of graphene and furnishes an efficient catalyst for the Cu-free Sonogashira cross coupling reaction between iodobenzene and phenylacetylene. Indeed, G-(H2L)-Pd shows an excellent conversion (90%) of reactants into diphenylacetylene under mild conditions (50 °C, water, aerobic atmosphere, 14 h). The catalyst proved to be reusable for at least four cycles, although decreasing yields down to 50% were observed.


Synthesis ◽  
2020 ◽  
Vol 52 (16) ◽  
pp. 2387-2394 ◽  
Author(s):  
Jorge A. Cabezas ◽  
Natasha Ferllini

A regiospecific palladium-catalyzed cross-coupling reaction using the operational equivalent of the dianion 1,3-dilithiopropyne, with aromatic iodides is reported. This reaction gives high yields of 1-propyn-1-yl-benzenes and 2-(propyn-1-yl)thiophenes in the presence of catalytic amounts of palladium(0) or (II) and stoichiometric amounts of copper iodide. No terminal alkyne or allene isomers were detected. Reaction conditions were very mild and several functional groups were tolerated.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 652 ◽  
Author(s):  
Monika Olesiejuk ◽  
Agnieszka Kudelko ◽  
Marcin Swiatkowski ◽  
Rafal Kruszynski

New derivatives of 4-alkyl-3,5-diaryl-4H-1,2,4-triazole were synthesized utilizing the Suzuki cross-coupling reaction. The presented methodology comprises of the preparation of bromine-containing 4-alkyl-4H-1,2,4-triazoles and their coupling with different commercially available boronic acids in the presence of ionic liquids or in conventional solvents. The obtained compounds were tested for their luminescence properties.


Sign in / Sign up

Export Citation Format

Share Document