scholarly journals A novel green process for tannic acid hydrolysis using an internally sulfonated hollow polystyrene sphere as catalyst

RSC Advances ◽  
2018 ◽  
Vol 8 (31) ◽  
pp. 17151-17158 ◽  
Author(s):  
Qionglin Luo ◽  
Shunqin Zeng ◽  
You Shu ◽  
Zaihui Fu ◽  
Hongran Zhao ◽  
...  

A polystyrene-hollow sphere catalyst was prepared by treating polystyrene-encapsulated calcium carbonate particles with concentrated hydrochloric acid.

1970 ◽  
Vol 9 (4) ◽  
pp. 589-596 ◽  
Author(s):  
B. B. Williams ◽  
J. L. Gidley ◽  
J. A. Guin ◽  
R. S. Schechter

1980 ◽  
Vol 44 (1) ◽  
pp. 375-394
Author(s):  
N.N. Bobyleva ◽  
B.N. Kudrjavtsev ◽  
I.B. Raikov

The DNA content of isolated micronuclei, differentiating macronuclei (macronuclear Anlagen), and adult macronuclei of Loxodes magnus was measured cytofluorimetrically in preparations stained with a Schiff-type reagent, auramine-SO2, following hydrochloric acid hydrolysis. The DNA content of the youngest macronuclear Anlagen proved to be the same as that of telophasic micronuclei (2 c). The Anlagen thus differentiate from micronuclei which are still in G1. The quantity of DNA in the macronuclear Anlagen thereafter rises to the 4-c level, simultaneously with DNA replication in the micronuclei which immediately follows mitosis. In non-dividing animals most micronuclei are already in G2. Adult macronuclei here contain on average 1.5 times more DNA than the micronuclei; their DNA content is about 5–6 c (in some individual nuclei, up to 10 c). These data are consistent with autoradiographic evidence indicating a weak DNA synthesis in the macronuclei of Loxodes and make likely the existence of partial DNA replication (e.g. gene amplification) in the macronuclei. The DNA content of adult macronuclei isolated from dividing animals proved to be significantly smaller than that of macronuclei isolated from non-dividing specimens of the same clone. In 3 clones studied, the former value amounted on average to 71–79, 78 and 95% of the latter, respectively. This drop of DNA content cannot be explained by ‘dilution’ of the old macronuclei with newly formed ones. The quantity of DNA in adult macronuclei thus seems to undergo cyclical changes correlated with cytokinesis, despite the fact that, in Loxodes magnus, the macronuclei themselves never divide and are simply segregated at every cell division. The macronuclei of Loxodes can be termed paradiploid or hyperdiploid.


ALCHEMY ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Dewi Yuliani ◽  
Khoirul Achmad Julianto ◽  
Akyunul Jannah

<p class="BodyAbstract">Rice bran is one among many agricultural by-products containing ~50-60 wt.% of carbohydrate. The carbohydrate is a prominent sugar source for bioethanol production. The objective of this research was to study bioethanol production from rice bran by acid and enzymatic treatment. The variations of acid used were dilute hydrochloric acid and sulphuric acid, while variations of enzyme used were amylolytic and cellulolytic enzyme. Ethanol production of acid-hydrolyzed rice bran was 24.95±1.61% (v/v) by hydrochloric acid and 29.57±2.04% (v/v) by sulphuric acid. Ethanol produced by enzymatic hydrolysis was quite low i.e. 6.7±0.04%, and 8.86±0.29% (v/v) for amylolytic and cellulolytic hydrolysate, respectively.</p><p class="BodyAbstract"> </p><p>Keywords: Bioethanol, rice bran, acid hydrolysis, enzymatic hydrolysis</p>


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1315
Author(s):  
Anton Schestakow ◽  
Matthias Hannig

Chitosan and tannic acid are known for their antibacterial properties. In the present in-situ study, their antibacterial and anti-adherent effects on biofilm formation on enamel were investigated. Six subjects carried upper jaw splints with bovine enamel specimens, allowing in-situ biofilm formation. During the two-day trial, subjects rinsed with experimental solutions that contained either chitosan, tannic acid (pH = 2.5), tannic acid (pH = 7) or hydrochloric acid. Water served as the negative and chlorhexidine as the positive control. Rinsing occurred four or five times following two different rinsing protocols to investigate both the immediate and long-lasting effects. After 48 h of intraoral exposure, the dental plaque was stained with LIVE/DEAD® BacLight, and fluorescence micrographs were evaluated by using the software ImageJ. The results were verified by scanning electron microscopy. Rinsing with chitosan resulted in little immediate antibacterial and anti-adherent effects but failed to show any long-lasting effect, while rinsing with tannic acid resulted in strong immediate and long-lasting effects. Except for a slightly lower antibacterial effect, the neutral solution of tannic acid was as good as the acidic solution. Hydrochloric acid showed neither an antibacterial nor an anti-adherent effect on dental biofilm formation. Experimental solutions containing tannic acid are promising anti-biofilm agents, irrespective of the pH values of the solutions. Chitosan, on the other hand, was not able to prevent biofilm formation.


1953 ◽  
Vol 6 (2) ◽  
pp. 156 ◽  
Author(s):  
JWT Merewether

Ethanol lignin-A from the ethanolysis of Eucalyptus regnans P. Muell. has been hydrolysed with dilute hydrochloric acid with the object of ascertaining whether the combined ethoxyl is present as an acetal or as ether. Hydrolysis with 12 per cent. hydrochloric acid was found to split off one ethoxyl group, while hydrolysis with 20 per cent. acid brought about complete de-ethylation. The de-ethylated ethanol lignin-A contained one carbonyl group less and two hydroxyl groups more than the original ethanol lignin-A. These results lend no support to the hypothesis that alcohol lignins are acetals, and favour the theory that the combined alkoxyl is probably present as ether.


1982 ◽  
Vol 4 (1) ◽  
pp. 12-15 ◽  
Author(s):  
M. M. A. de Bruyne ◽  
A. Sinnema ◽  
A. M. A. Verweij

2020 ◽  
Author(s):  
Kusmono Kusmono ◽  
Dimas Abdillah Akbar

Abstract Nanocrystalline celluloses (NCCs) were successfully extracted from ramie fibers using chemical pretreatments followed by hydrochloric acid hydrolysis. The effects of acid concentration and hydrolysis time on the characteristics of NCCs were investigated in this study. Results showed that the optimal hydrolysis conditions were found to be 6 M hydrochloric acid concentration at 45 °C for 70 min. The obtained NCC had a rod like-shape with an average of 8.07 nm in diameter, 158.51 nm in length, 22.37 in aspect ratio, 89.61% in the crystallinity index, and 5.81 nm in crystallite size. The higher crystallinity and thermal stability were exhibited by NCCs compared to both raw fibers and chemically purified cellulose. The hydrolysis time had a significant effect on crystallinity and thermal stability. The crystallinity index and thermal stability of NCCs were obtained to decrease with increasing hydrolysis time.


Sign in / Sign up

Export Citation Format

Share Document