ramie fibers
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 28)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zheng Zeng ◽  
Fu Li ◽  
Renyan Huang ◽  
Yanzhou Wang ◽  
Touming Liu

Abstract Background Phosphorylation modification, one of the most common post-translational modifications of proteins, widely participates in the regulation of plant growth and development. Fibers extracted from the stem bark of ramie are important natural textile fibers; however, the role of phosphorylation modification in the growth of ramie fibers is largely unknown. Results Here, we report a phosphoproteome analysis for the barks from the top and middle section of ramie stems, in which the fiber grows at different stages. A total of 10,320 phosphorylation sites from 9,170 unique phosphopeptides that were assigned to 3,506 proteins was identified, and 458 differentially phosphorylated sites from 323 proteins were detected in the fiber developmental barks. Twelve differentially phosphorylated proteins were the homologs of Arabidopsis fiber growth-related proteins. We further focused on the function of the differentially phosphorylated KNOX protein whole_GLEAN_10029667, and found that this protein dramatically repressed the fiber formation in Arabidopsis. Additionally, using a yeast two-hybridization assay, we identified a kinase and a phosphatase that interact with whole_GLEAN_10029667, indicating that they potentially target this KNOX protein to regulate its phosphorylation level. Conclusion The finding of this study provided insights into the involvement of phosphorylation modification in ramie fiber growth, and our functional characterization of whole_GLEAN_10029667 provide the first evidence to indicate the involvement of phosphorylation modification in the regulation of KNOX protein function in plants.


2021 ◽  
Vol 22 (2) ◽  
pp. 62
Author(s):  
Umi Lailatul Jamilah ◽  
Sujito Sujito

THE IMPROVEMENT OF RAMIE FIBER PROPERTIES AS COMPOSITE MATERIALS USING ALKALIZATION TREATMENT: NaOH CONCENTRATION. Ramie fiber is a plant fiber that has good quality and potential as a constituent of composite materials. In this study, ramie fiber surface modification was conducted through alkalization with various at 0%, 4%, 5%, 6%, 7%, 8%, and 9% concentrations of NaOH using a magnetic stirrer with a speed of 200 rpm at 70οC for 5 hours. Alkaline ramie fibers are characterized using the Cheson method to determine the chemical composition of ramie fiber, FT-IR test to determine the function group of ramie fiber, morphological test to know the surface structure and diameter of ramie fiber, as well as tensile test to know the tensile strength and tensile modulus of PLA/ramie composite. Overall, the increase of NaOH concentration up to 8% percentage was able to increase the level of cellulose and lignin ramie fibers by 88.180 % and 2.444 %, as well as lower hemicellulose levels of 1.446 %. The alkalization treatment of 8% NaOH, optimally reduces the hydrophilic properties of the fiber. The increased concentration of NaOH makes the fiber surface cleaner and the diameter smaller, but the fiber structure is damaged at a concentration of NaOH more than 8%. Tensile test results showed that alkalized ramie fibers with an 8% concentration of NaOH produced PLA/ramie composites with the highest tensile strength and tensile modulus of 57.37 MPa and 248.25 MPa. Thus, the optimum ramie fiber properties are increased using alkalization with an 8% concentration of NaOH.


2021 ◽  
Vol 9 (2) ◽  
pp. 223
Author(s):  
Manggar Arum Aristri ◽  
Muhammad Adly Rahandi Lubis ◽  
Raden Permana Budi Laksana ◽  
Faizatul Falah ◽  
Widya Fatriasari ◽  
...  

In this study, technical lignin from black liquor was used as a pre-polymer for the preparation of bio-polyurethane (Bio-PU) resins. Briefly, the isolated lignin was fractionated using ethyl acetate (EtAc) and methanol (MeOH). The liquid fractions of lignin, such as lignin-EtAc (L-EtAc) and lignin-methanol (L-MeOH), were mixed with 10% of polymeric isocyanate (based on the weight of liquid fractions) to obtain Bio-PU resins. The isolated lignin, fractionated lignin, and lignin-derived Bio-PU resins were characterized using several techniques. The obtained Bio-PU resins were then used to modify ramie fibers using vacuum impregnation method. Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) revealed that the isolated lignin had quite similar characteristics to the lignin standard. Fractionation of lignin with EtAc and MeOH altered its characteristics. FTIR, DSC, and TGA showed that solid fractions of lignin had similar characteristics to lignin standard and isolated lignin, while the liquid fractions had characteristics from lignin and the solvents. The absorption band of isocyanate (−N=C=O) groups was shifted to 2285 cm−1 from 2240 cm−1 owing to the reaction with the −OH groups in lignin, forming urethane (R−NH−C=O−R) groups at 1605 cm−1 in Bio-PU resins. Thermal properties of Bio-PU resins derived from L-EtAc exhibited greater endothermic reaction compared to Bio-PU-L-MeOH. As a result, the free −N=C=O groups in Bio-PU resins have reacted with –OH groups on the surface of ramie fibers and improved its thermal properties. Modification of ramie fibers with Bio-PU resins improved the fibers’ thermal stability by 15% using Bio-PU-LEtAc for 60 min of impregnation.Keywords: Bio-polyurethane resins, Impregnation, Lignin fractions, Ramie fibers, Thermal stability


2020 ◽  
Vol 276 ◽  
pp. 124217 ◽  
Author(s):  
Tong Shu ◽  
Yun Bai ◽  
Ya-wei Wang ◽  
Hui-hui Wang ◽  
Pan-deng Li ◽  
...  

2020 ◽  
pp. 1-8
Author(s):  
Wanwan Lv ◽  
Kai Nie ◽  
Yan Song ◽  
Chuanhe Li ◽  
Haoxi Ben ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2711
Author(s):  
Artur Camposo Pereira ◽  
Andreza Menezes Lima ◽  
Luana Cristyne da Cruz Demosthenes ◽  
Michelle Souza Oliveira ◽  
Ulisses Oliveira Costa ◽  
...  

Graphene oxide (GO) incorporation in natural fiber composites has recently defined a novel class of materials with enhanced properties for applications, including ballistic armors. In the present work, the performance of a 0.5 vol % GO-incorporated epoxy matrix composite reinforced with 30 vol % fabric made of ramie fibers was investigated by stand-alone ballistic tests against the threat of a 0.22 lead projectile. Composite characterization was also performed by Fourier-transform infrared spectroscopy, thermal analysis and X-ray diffraction. Ballistic tests disclosed an absorbed energy of 130 J, which is higher than those reported for other natural fabrics epoxy composite, 74–97 J, as well as plain Kevlar (synthetic aramid fabric), 100 J, with the same thickness. This is attributed to the improved adhesion between the ramie fabric and the composite matrix due to the GO—incorporated epoxy. The onset of thermal degradation above 300 °C indicates a relatively higher working temperature as compared to common natural fiber polymer composites. DSC peaks show a low amount of heat absorbed or release due to glass transition endothermic (113–121 °C) and volatile release exothermic (~132 °C) events. The 1030 cm−1 prominent FTIR band, associated with GO bands between epoxy chains and graphene oxide groups, suggested an effective distribution of GO throughout the composite matrix. As expected, XRD of the 30 vol % ramie fabric-reinforced GO-incorporated epoxy matrix composite confirmed the displacement of the (0 0 1) peak of GO by 8° due to intercalation of epoxy chains into the spacing between GO layers. By improving the adhesion to the ramie fabric and enhancing the thermal stability of the epoxy matrix, as well as by superior absorption energy from projectile penetration, the GO may contribute to the composite effective ballistic performance.


Heliyon ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. e05486
Author(s):  
Kusmono ◽  
R. Faiz Listyanda ◽  
Muhammad Waziz Wildan ◽  
Mochammad Noer Ilman

Cellulose ◽  
2020 ◽  
Author(s):  
Wang Yu ◽  
Chaoyun Wang ◽  
Yongjian Yi ◽  
Hongying Wang ◽  
Yuanru Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document