scholarly journals Pyrene-based metal–organic framework NU-1000 photocatalysed atom-transfer radical addition for iodoperfluoroalkylation and (Z)-selective perfluoroalkylation of olefins by visible-light irradiation

RSC Advances ◽  
2018 ◽  
Vol 8 (57) ◽  
pp. 32610-32620 ◽  
Author(s):  
Tiexin Zhang ◽  
Pengfang Wang ◽  
Zirui Gao ◽  
Yang An ◽  
Cheng He ◽  
...  

Iodoperfluoroalkylation or (Z)-selective perfluoroalkylation of olefins is mediated through energy transfer processes by using pyrene-based MOF NU-1000 under visible-light irradiation.

2021 ◽  
Vol 7 (2) ◽  
pp. 129-141
Author(s):  
Adawiah Adawiah ◽  
Muhammad Derry Luthfi Yudhi ◽  
Agustino Zulys

The yttrium based metal-organic framework (MOF) Y-PTC was synthesized by the solvothermal method using perylene as the linker and yttrium as metal ion. This study aims to assess the photocatalytic activity of yttrium-perylenetetracarboxylate (Y-PTC) metal-organic framework (MOF) toward methylene blue and methyl orange under visible light irradiation. The results of the FTIR analysis showed that Y-PTC MOF had a different structure and composition from its precursor (Na4PTC). The Y-PTC MOF has a bandgap energy value of 2.20 eV with a surface area of 47.7487 m2/g. The SEM-EDS analysis showed an elemental composition of yttrium, carbon, and oxygen, were 6.9%, 72.1% and 20.7%, respectively. Furthermore, Y-PTC MOF was able to adsorb dyes at the optimum by 78.10% and 35.57% toward methylene blue (MB) and methyl orange (MO) at the dispersion period of 60 mins. Y-PTC MOF exhibited photocatalytic activity towards the degradation of methylene blue and methyl orange under visible light irradiation. The addition of H2O2 inhibited Y-PTC photocatalytic activity towards MO degradation from 50.89% to 26.38%. In contrast to MO, the addition of H2O2 had a positive effect on MB, which increased the degradation from 87.56% to 91.65%. Therefore, Y-PTC MOF possessed the potential of a photocatalyst material in dyes degradation under visible light irradiation.


2019 ◽  
Vol 7 (33) ◽  
pp. 10211-10217 ◽  
Author(s):  
Dongying Shi ◽  
Chao-Jie Cui ◽  
Min Hu ◽  
A-Hao Ren ◽  
Lu-Bin Song ◽  
...  

This work presents a cost-effective mixed-metal mixed-ligand MOF, which exhibits highly efficient photocatalytic H2 generation under visible-light irradiation.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4052
Author(s):  
Vera V. Butova ◽  
Olga A. Burachevskaya ◽  
Vitaly A. Podshibyakin ◽  
Evgenii N. Shepelenko ◽  
Andrei A. Tereshchenko ◽  
...  

Here, we report a new photosensitive metal–organic framework (MOF) that was constructed via the modification of UiO-66-NH2 with diarylethene molecules (DAE, 4-(5-Methoxy-1,2-dimethyl-1H-indol-3-yl)-3-(2,5-dimethylthiophen-3-yl)-4-furan-2,5-dione). The material that was obtained was a highly crystalline porous compound. The photoresponse of the modified MOF was observed via UV–Vis and IR spectroscopy. Most of the DAE molecules inside of the UiO-66-pores had an open conformation after synthesis. However, the equilibrium was able to be shifted further toward an open conformation using visible light irradiation with a wavelength of 520 nm. Conversely, UV-light with a wavelength of 450 nm initiated the transformation of the photoresponsive moieties inside of the pores to a closed modification. We have shown that this transformation could be used to stimulate hydrogen adsorption–desorption processes. Specifically, visible light irradiation increased the H2 capacity of modified MOF, while UV-light decreased it. A similar hybrid material with DAE moieties in the UiO-66 scaffold was applied for hydrogen storage for the first time. Additionally, the obtained results are promising for smart H2 storage that is able to be managed via light stimuli.


Sign in / Sign up

Export Citation Format

Share Document